基于Caffe的Large Margin Softmax Loss的实现(中)

Posted 喵耳朵

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于Caffe的Large Margin Softmax Loss的实现(中)相关的知识,希望对你有一定的参考价值。

小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作。而这一章,我们开始进行前馈的研究。

 

小喵博客: http://miaoerduo.com

博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html

 

四、前馈

还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系。

这次,我们要一点一点的通过代码来实现这些公式。小喵主要是GPU上实现前后馈的代码,因为这个层只是用来训练,GPU速度应该会快一点。

我们首先要进行一般的FC层的前馈,因为LM_FC的前馈只是修改了一般的FC中的若干个值,而大部分的值都是没有修改过的。

 1 const Dtype* bottom_data = bottom[0]->gpu_data();
 2 const Dtype* label_data = bottom[1]->gpu_data();
 3 Dtype* top_data = top[0]->mutable_gpu_data();
 4 const Dtype* weight = this->blobs_[0]->gpu_data();
 5 // 普通fc层的计算
 6 if (M_ == 1) {
 7   caffe_gpu_gemv<Dtype>(CblasNoTrans, N_, K_, (Dtype)1.,
 8                        weight, bottom_data, (Dtype)0., top_data);
 9 } else {
10   caffe_gpu_gemm<Dtype>(CblasNoTrans,
11                         transpose_ ? CblasNoTrans : CblasTrans,
12                         M_, N_, K_, (Dtype)1.,
13                         bottom_data, weight, (Dtype)0., top_data);
14 }

这样就计算完了一个普通的FC的前馈。

之后是一些具体的实现。

1,$\\cos(\\theta_j)=\\frac{W_j^Tx_i}{\\|W_j\\|\\|x_i\\|}$

这是要求出label为$j$的weight的权值和feature之间的余弦值。公式大家在高中应该就学过了。这样需要出三部分:$W_j^Tx_i$,$\\|W_j\\|$和$\\|x_i\\|$。这里$i$表示feature的序号,因为一个mini batch中有很多张图片。$j$表示正确的label值。

$W_j^Tx_i$的计算非常简单,因为FC层的前馈计算出来的就是这个值。因此我们可以直接从FC的前馈结果中直接复制对应位置的结果。

$\\|W_j\\|$和$\\|x_i\\|$是比较简单的模值的计算,使用caffe_cpu_dot很容易就可以求得(为什么不使用caffe_gpu_dot呢?因为小喵在使用caffe_gpu_dot的时候,caffe会报一个奇怪的错误,不知道是不是因为GPU的显存不能随意访问的)。

最后的余弦值带入到上面的式子,就一下子搞定~

这里用到了几个变量:

M_: batch size

N_: class num

K_: feature length

 1 // w * x
 2 // 直接从前馈的结果中复制
 3 Dtype *wx_data = this->wx_.mutable_gpu_data();
 4 copy_label_score<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(M_, N_, label_data, top_data, wx_data);
 5 
 6 // w * w
 7 Dtype *abs_w_data = this->abs_w_.mutable_cpu_data();
 8 for (int m = 0; m < M_; ++ m) {
 9   abs_w_data[m] = caffe_cpu_dot<Dtype>(
10     K_,
11     this->blobs_[0]->cpu_data() + static_cast<int>(label_cpu_data[m]) * K_,
12     this->blobs_[0]->cpu_data() + static_cast<int>(label_cpu_data[m]) * K_
13     );
14 }
15 
16 // x * x
17 Dtype *abs_x_data = this->abs_x_.mutable_cpu_data();
18 for (int m = 0; m < M_; ++ m) {
19   abs_x_data[m] = caffe_cpu_dot<Dtype>(
20     K_, 
21     bottom[0]->cpu_data() + m * K_,
22     bottom[0]->cpu_data() + m * K_
23     );
24 }
25 // abs_w, abs_x
26 caffe_gpu_powx<Dtype>(M_, this->abs_w_.mutable_gpu_data(), 0.5, this->abs_w_.mutable_gpu_data());
27 caffe_gpu_powx<Dtype>(M_, this->abs_x_.mutable_gpu_data(), 0.5, this->abs_x_.mutable_gpu_data());
28 
29 // cos_t = wx / (|x| * |w|)
30 Dtype *cos_t_data = this->cos_t_.mutable_gpu_data();
31 caffe_gpu_div<Dtype>(M_, wx_data, this->abs_x_.gpu_data(), cos_t_data);
32 caffe_gpu_div<Dtype>(M_, cos_t_data, this->abs_w_.gpu_data(), cos_t_data);

其中copy_label_score是我们自己编写的用来复制结果的核函数(如何编写Cuda程序就是另一门学科了):

1 template <typename Dtype>
2 __global__ void copy_label_score(const int M, const int N, const Dtype *label_data, const Dtype *top_data, Dtype *wx_data) {
3   CUDA_KERNEL_LOOP(index, M) {
4     wx_data[index] = top_data[index * N + static_cast<int>(label_data[index])];
5   }
6 }

相信机智如你的喵粉,看到这几行代码,一定可以轻松理解。

这里,小喵想多介绍一点东西。
我们知道Caffe里面的数据都是通过Blob结构来存储的,比如这里的bottom_data,其实就是一个blob,默认形状是(n, c, h, w),n表示的就是batch size,c是channel数,h,w分贝表示高和宽。而且blob中的内存的存储顺序,也和一般的C语言中的数组一样。因此我们这里计算feature的模的时候,是直接每K_个数值计算一次点乘。
同理,weight是存储在this->blobs[0]中的,那么weight的形状又是什么样子的呢?这里非常碰巧的是,如果我们在prototxt中设置的transpose为false的话,weight的形状是N_*K_,也就是说,我们可以将weight看成一个矩阵,它的每一行都与feature直接点乘,得到输出,也就是说weight的每一行都是我们需要计算模值的$W_j$,所以我们计算weight的模的时候,用的计算方法和计算feature模时很相似。我们这里强制设置transpose为false,因为这样计算会比较简单。如果你设成了true,那就必须自己写个求模的函数了。

2,$\\cos(m\\theta_i)=\\sum_n(-1)^n{C_m^{2n}\\cos^{m-2n}(\\theta_i)\\cdot(1-\\cos(\\theta_i)^2)^n}, (2n\\leq m)$

我们在(1)中求出了$\\cos(\\theta)$,对于给定的margin,只需要代入公式就可以求出$\\cos(m\\theta)$的值了。

 1 template <typename Dtype>
 2 __global__ void cal_cos_mt(const int count, const unsigned int margin, const int *C_M_N, const Dtype *cos_t_data, Dtype *cos_mt_data) {
 3   CUDA_KERNEL_LOOP(index, count) {
 4     Dtype cos_t = cos_t_data[index];
 5     Dtype sin_t_2 = 1 - cos_t * cos_t;
 6     Dtype cos_mt = 0.;
 7     int flag = -1;
 8     for (int n = 0; n <= (margin / 2); ++ n) {
 9       flag *= -1;
10       cos_mt += flag * C_M_N[2 * n] * powf(cos_t, (margin - 2 * n)) * powf(sin_t_2, n);
11     }
12     cos_mt_data[index] = cos_mt;
13   }
14 }

上面是用来计算$\\cos(m\\theta)$的cuda函数,调用也十分的简单:

1 // cos(mt)
2 cal_cos_mt<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(
3   M_, this->margin, this->C_M_N_.gpu_data(), this->cos_t_.mutable_gpu_data(), this->cos_mt_->mutable_gpu_data());

3,$f_{y_{i}}=(-1)^k\\cdot\\|W_{y_{i}}\\|\\|x_{i}\\|\\cos(m\\theta_i)-2k\\cdot\\|W_{y_i}\\|\\|x_i\\|$

严格上来说,我们需要求的并不是这个式子,而是:

\\[f_{y_i}=\\frac{\\lambda\\|W_{y_i}\\|\\|x_i\\|\\cos(\\theta_{y_i})+\\|W_{y_i}\\|\\|x_i\\|\\varphi(\\theta_{y_i})}{1+\\lambda}\\]

\\[\\varphi(\\theta)=(-1)^k\\cos(m\\theta)-2k, \\theta\\in[\\frac{k\\pi}{m}, \\frac{(k+1)\\pi}{m}]\\]

可以看出,当$\\lambda$为0的时候,这两个式子就退化成前面的一个式子了。

k的求法十分简单,只需要将$\\cos(\\theta)$与各个区间进行比较就可以得到。

 1 // k
 2 int *k_cpu_data = this->k_.mutable_cpu_data();
 3 const Dtype *cos_t_cpu_data = this->cos_t_.cpu_data();
 4 for (int m = 0; m < M_; ++ m) {
 5   for (int _k = 0; _k < this->cos_theta_bound_.count(); ++ _k) {
 6     if (this->cos_theta_bound_.cpu_data()[_k] < cos_t_cpu_data[m]) {
 7       k_cpu_data[m] = _k - 1;
 8       break;
 9     }
10   }
11 }

最后一步就是计算出真正的前馈值了!按照公式容易编写程序:

 1 template <typename Dtype>
 2 __global__ void LMForward(
 3   const int M, const int N, const float lambda,
 4   const Dtype *label_data, const Dtype *cos_mt_data, const int *k_data,
 5   const Dtype *abs_w_data, const Dtype *abs_x_data, Dtype *top_data) {
 6 
 7   CUDA_KERNEL_LOOP(index, M) {
 8     Dtype cos_mt = cos_mt_data[index];
 9     int k = k_data[index];
10     int label = static_cast<int>(label_data[index]);
11     Dtype abs_w = abs_w_data[index];
12     Dtype abs_x = abs_x_data[index];
13     top_data[N * index + label] =  (lambda * top_data[N * index + label] + abs_w * abs_x * ( powf(-1, k) * cos_mt - 2 * k )) / (1 + lambda);
14   }
15 }

调用也十分简单:

1 // y
2 LMForward<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(
3   M_, N_, this->lambda,
4   label_data, this->cos_mt_->gpu_data(), this->k_.gpu_data(),
5   this->abs_w_.gpu_data(), this->abs_x_.gpu_data(), top[0]->mutable_gpu_data());

最后附上,完整的前馈代码(省略头文件和caffe的名字空间):

  1 template <typename Dtype>
  2 __global__ void copy_label_score(const int M, const int N, const Dtype *label_data, const Dtype *top_data, Dtype *wx_data) {
  3   CUDA_KERNEL_LOOP(index, M) {
  4     wx_data[index] = top_data[index * N + static_cast<int>(label_data[index])];
  5   }
  6 }
  7 
  8 template <typename Dtype>
  9 __global__ void cal_cos_mt(const int count, const unsigned int margin, const int *C_M_N, const Dtype *cos_t_data, Dtype *cos_mt_data) {
 10   CUDA_KERNEL_LOOP(index, count) {
 11     Dtype cos_t = cos_t_data[index];
 12     Dtype sin_t_2 = 1 - cos_t * cos_t;
 13     Dtype cos_mt = 0.;
 14     int flag = -1;
 15     for (int n = 0; n <= (margin / 2); ++ n) {
 16       flag *= -1;
 17       cos_mt += flag * C_M_N[2 * n] * powf(cos_t, (margin - 2 * n)) * powf(sin_t_2, n);
 18     }
 19     cos_mt_data[index] = cos_mt;
 20   }
 21 }
 22 
 23 template <typename Dtype>
 24 __global__ void LMForward(
 25   const int M, const int N, const float lambda,
 26   const Dtype *label_data, const Dtype *cos_mt_data, const int *k_data,
 27   const Dtype *abs_w_data, const Dtype *abs_x_data, Dtype *top_data) {
 28 
 29   CUDA_KERNEL_LOOP(index, M) {
 30     Dtype cos_mt = cos_mt_data[index];
 31     int k = k_data[index];
 32     int label = static_cast<int>(label_data[index]);
 33     Dtype abs_w = abs_w_data[index];
 34     Dtype abs_x = abs_x_data[index];
 35     top_data[N * index + label] =  (lambda * top_data[N * index + label] + abs_w * abs_x * ( powf(-1, k) * cos_mt - 2 * k )) / (1 + lambda);
 36   }
 37 }
 38 
 39 template <typename Dtype>
 40 void LargeMarginInnerProductLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
 41     const vector<Blob<Dtype>*>& top) {
 42   const Dtype* bottom_data = bottom[0]->gpu_data();
 43   const Dtype* label_data = bottom[1]->gpu_data();
 44   Dtype* top_data = top[0]->mutable_gpu_data();
 45   const Dtype* weight = this->blobs_[0]->gpu_data();
 46 
 47   // 普通fc层的计算
 48   if (M_ == 1) {
 49     caffe_gpu_gemv<Dtype>(CblasNoTrans, N_, K_, (Dtype)1.,
 50                          weight, bottom_data, (Dtype)0., top_data);
 51   } else {
 52     caffe_gpu_gemm<Dtype>(CblasNoTrans,
 53                           transpose_ ? CblasNoTrans : CblasTrans,
 54                           M_, N_, K_, (Dtype)1.,
 55                           bottom_data, weight, (Dtype)0., top_data);
 56   }
 57 
 58   const Dtype* label_cpu_data = bottom[1]->cpu_data();
 59 
 60   // w * x
 61   // 直接从前馈的结果中复制
 62   Dtype *wx_data = this->wx_.mutable_gpu_data();
 63   copy_label_score<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(M_, N_, label_data, top_data, wx_data);
 64 
 65   // w * w
 66   Dtype *abs_w_data = this->abs_w_.mutable_cpu_data();
 67   for (int m = 0; m < M_; ++ m) {
 68     abs_w_data[m] = caffe_cpu_dot<Dtype>(
 69       K_,
 70       this->blobs_[0]->cpu_data() + static_cast<int>(label_cpu_data[m]) * K_,
 71       this->blobs_[0]->cpu_data() + static_cast<int>(label_cpu_data[m]) * K_
 72       );
 73   }
 74   
 75   // x * x
 76   Dtype *abs_x_data = this->abs_x_.mutable_cpu_data();
 77   for (int m = 0; m < M_; ++ m) {
 78     abs_x_data[m] = caffe_cpu_dot<Dtype>(
 79       K_, 
 80       bottom[0]->cpu_data() + m * K_,
 81       bottom[0]->cpu_data() + m * K_
 82       );
 83   }
 84 
 85   // abs_w, abs_x
 86   caffe_gpu_powx<Dtype>(M_, this->abs_w_.mutable_gpu_data(), 0.5, this->abs_w_.mutable_gpu_data());
 87   caffe_gpu_powx<Dtype>(M_, this->abs_x_.mutable_gpu_data(), 0.5, this->abs_x_.mutable_gpu_data());
 88 
 89   // cos_t = wx / (|x| * |w|)
 90   Dtype *cos_t_data = this->cos_t_.mutable_gpu_data();
 91   caffe_gpu_div<Dtype>(M_, wx_data, this->abs_x_.gpu_data(), cos_t_data);
 92   caffe_gpu_div<Dtype>(M_, cos_t_data, this->abs_w_.gpu_data(), cos_t_data);
 93 
 94   // cos(mt)
 95   cal_cos_mt<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(
 96     M_, this->margin, 
 97     this->C_M_N_.gpu_data(), 
 98     this->cos_t_.gpu_data(),
 99     this->cos_mt_.mutable_gpu_data()
100     );
101 
102   // k
103   int *k_cpu_data = this->k_.mutable_cpu_data();
104   const Dtype *cos_t_cpu_data = this->cos_t_.cpu_data();
105   for (int m = 0; m < M_; ++ m) {
106     for (int _k = 0; _k < this->cos_theta_bound_.count(); ++ _k) {
107       if (this->cos_theta_bound_.cpu_data()[_k] < cos_t_cpu_data[m]) {
108         k_cpu_data[m] = _k - 1;
109         break;
110       }
111     }
112   }
113 
114   // y
115   LMForward<Dtype><<<CAFFE_GET_BLOCKS(M_), CAFFE_CUDA_NUM_THREADS>>>(
116     M_, N_, this->lambda,
117     label_data, this->cos_mt_.gpu_data(), this->k_.gpu_data(),
118     this->abs_w_.gpu_data(), this->abs_x_.gpu_data(), top[0]->mutable_gpu_data());
119 }

 

那么,这样关于large margin softmax loss的前馈我们就轻松的实现了。下一篇,我们要讲最复杂的后馈的实现了。

 

如果您觉得本文对您有帮助,那请小喵喝杯茶吧~~O(∩_∩)O~~ 再次感慨 $\\LaTeX$ 大法好。

转载请注明出处~

 

以上是关于基于Caffe的Large Margin Softmax Loss的实现(中)的主要内容,如果未能解决你的问题,请参考以下文章

论文笔记 Spectral Regularization Algorithms for Learning Large IncompleteMatrices (soft-impute)

Soft-Margin SVM

soft-margin SVM

支持向量机——Large Margin Classifier

The perception and large margin classifiers

机器学习技法:04 Soft-Margin Support Vector Machine