HDU 4745 Two Rabbits (区间DP)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 4745 Two Rabbits (区间DP)相关的知识,希望对你有一定的参考价值。
题意:给定一个圆形的环,有两个只兔子,一只顺时针跳,一个逆时针,但每次跳到的石头必须一样,问你最多能跳多少轮。
析:本来以为是LCS呢,把那个序列看成一个回文,然后就能做了,但是时间受不了。其实是一个区间DP,dp[i[j] 表示从 i 到 j 中最长的回文数。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int dp[maxn][maxn]; int main(){ while(scanf("%d", &n) == 1 && n){ for(int i = 0; i < n; ++i) scanf("%d", a+i); memset(dp, 0, sizeof dp); for(int i = 0; i < n; ++i) dp[i][i] = 1; for(int i = n-2; i >= 0; --i) for(int j = i+1; j < n; ++j) if(a[i] == a[j]) dp[i][j] = dp[i+1][j-1] + 2; else dp[i][j] = Max(dp[i+1][j], dp[i][j-1]); int ans = 0; for(int i = 0; i < n; ++i) ans = Max(ans, dp[0][i]+dp[i+1][n-1]); printf("%d\n", ans); } return 0; }
以上是关于HDU 4745 Two Rabbits (区间DP)的主要内容,如果未能解决你的问题,请参考以下文章