信息熵 增益
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了信息熵 增益相关的知识,希望对你有一定的参考价值。
1 计算熵
我们检查的属性是是否出去玩。用Excel对上面数据的play变量的各个取值排个序(这个工作簿里把“play”这个词去掉),一共是14条记录,你能数出取值为yes的记录有9个,取值为no的有5个,我们说这个样本里有9个正例,5 个负例,记为S(9+,5-),S是样本的意思(Sample)。这里熵记为Entropy(S),计算公式为:
解释一下,9/14是正例的个数与总记录之比,同样5/14是负例占总记录的比例。log(.)是以2为底的对数(我们知道以e为底的对数称为自然对数,记为ln(.),lg(.)表示以10为底的对数)。在Excel里我们可以随便找一个空白的单元格,键入以下公式即得0.940:
这里LOG(9/14,2)中的“2”表示以2为底。类似地,如果你习惯用Matlab做数学运算本,公式为
其中“2”的含义与上同。
总结:在这个例子中,我们的输出属性(我们要检查的属性)“play”只有两个取值,同样地,如果输出属性的取值大于2,公式是对成的,一样的形式,连加就是,找到各个取值的个数,求出各自的比例。如果样本具有二元输出属性,其熵的公式为
其中,p+、p-分别为正例和负例占总记录的比例。输出属性取值大于2的情况,公式是对称的。
2 分别以Wind、Humidity、Outlook和Temperature作为根节点,计算其信息增益
可以数得,属性Wind中取值为Weak的记录有Normal的记录有8条,其中正例6个,负例2个;同样,取值为Strong的记录6个,正例负例个3个。我们可以计算相应的熵为:
现在就可以计算出相应的信息增益了:
Gain(Wind)=Entropy(S)-(8/14)*Entropy(Weak)-(6/14)*Entropy(Strong)=0.940-(8/14)*0.811-(6/14)*1.0=0.048
这个公式的奥秘在于,8/14是属性Wind取值为Weak的个数占总记录的比例,同样6/14是其取值为Strong的记录个数与总记录数之比。
同理,如果以Humidity作为根节点:
以Outlook作为根节点:
Entropy(Sunny)=0.971 ; Entropy(Overcast)=0.0 ; Entropy(Rain)=0.971
Gain(Outlook)=0.940-(5/14)*Entropy(Sunny)-(4/14)*Entropy(Overcast)-(5/14)*Entropy(Rain)=0.247
以Temperature作为根节点:
Entropy(Cool)=0.811 ; Entropy(Hot)=1.0 ; Entropy(Mild)=0.918
Gain(Temperature)=0.940-(4/14)*Entropy(Cool)-(4/14)*Entropy(Hot)-(6/14)*Entropy(Mild)=0.029
这样我们就得到了以上四个属性相应的信息增益值:
Gain(Wind)=0.048 ;Gain(Humidity)=0.151 ; Gain(Outlook)=0.247 ;Gain(Temperature)=0.029
最后按照信息增益最大的原则选Outlook为根节点。子节点重复上面的步骤。
以上是关于信息熵 增益的主要内容,如果未能解决你的问题,请参考以下文章