codevs 4712 gcd与lcm问题
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了codevs 4712 gcd与lcm问题相关的知识,希望对你有一定的参考价值。
这个是某年noip什么题的加强版。
并无卵用?线性筛下质因子个数即可。然后答案就是2^(m/d的质因子个数)
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1000005
using namespace std;
int t,m,d;
int prime[maxn/10],cnt=0,tab[maxn],r[50];
bool vis[maxn];
void get_table()
{
tab[1]=1;
memset(vis,false,sizeof(vis));
for (int i=2;i<maxn;i++)
{
if (vis[i]==false)
{
prime[++cnt]=i;
tab[i]=2;
}
for (int j=1;j<=cnt && i*prime[j]<maxn;j++)
{
vis[i*prime[j]]=true;
if (i%prime[j]==0)
{
tab[i*prime[j]]=tab[i];
break;
}
else
tab[i*prime[j]]=tab[i]+1;
}
}
int ans=1;
for (int i=1;i<=35;i++)
{
ans=ans*2;
r[i]=ans;
}
}
int main()
{
scanf("%d",&t);
get_table();
for (int k=1;k<=t;k++)
{
scanf("%d%d",&d,&m);
if ((d==0) || (m==0)) printf("0\n");
else if (m<d) printf("0\n");
else if (m%d!=0) printf("0\n");
else printf("%d\n",r[tab[m/d]-1]);
}
return 0;
}
以上是关于codevs 4712 gcd与lcm问题的主要内容,如果未能解决你的问题,请参考以下文章