数据结构——康托展开与逆康托展开

Posted ninedream

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构——康托展开与逆康托展开相关的知识,希望对你有一定的参考价值。

含义

  康托展开是一个全排列到一个自然数双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。

原理

  X = s1(n-1)! + s2(n-2)! + s3(n-3)! + …… + sn-1 * 1! + sn * 0! 

  其中si表示在第i位右边比ai小的数的个数。

  我们现在用sl表示第i位左边比ai小的数的个数,sr表示第i位右边比ai小的数的个数,显然可以得到如下等式:
  ai = sl + sr + 1

  故公式中的si可以用上述等式计算:sr = ai - sl -1

  依照上述原理,则1,2,3,4,5的一种全排列3,4,1,5,2可以映射为2,2,0,1,0

  根据公式,该集合实际上表示的就是一个变进制数。

  简便计算:X = ((s1 * (n-1) + s2) * (n-3) + s3) * (n-3) + …… 

康托展开

  暴力  O(n2):

  为了便于讲解下面的线段树优化,此处选择维护vis数组的方式(当然直接比大小也是一样的)。

  vis[j]用以记录j是否已出现,未出现为0,已出现为1。故a[i]左边比其小的数的个数就是vis[j]的和(j<a[i])。

  计算ans时,由于最后一位固定是0,故只需计算到n-1位即可。

  而所有全排列中比该序列小的有ans个,故该序列排在第ans+1位。

  代码如下:

int Power_Cantor()

    int ans=0;
    for(int i=1;i<=n-1;i++)
    
        scanf("%d",&a[i]);
        int sum=0;
        for(int j=1;j<=a[i];j++)sum+=vis[j];
        vis[a[i]]=1;
        a[i]-=sum+1;
        ans=(ans+a[i])*(n-i);
    
    return ans+1;

  线段树优化  O(nlogn):

  我们用线段树结构存储vis数组,即可实现logn时间复杂度内求出结果。

  代码如下:

int Cantor()

    int ans=0;
    for(int i=1;i<=n-1;i++)
    
        int now=a[i];
        now-=query(1,1,n,1,a[i])+1;
        update(1,1,n,a[i],1);
        ans=(ans+now)*(n-i);
    
    return ans+1;

逆康托展开

  首先是将所给的排列位数转变为我们所需的变进制数:

  仍以3,4,1,5,2为例,其康托展开值为61:

  用 61 / 4! = 2余13,则a[1] = 2,即首位右边比首位小的数有2个,所以首位为3。

  用 13 / 3! = 2余1,则a[2] = 2,即在第二位之后小于第二位的数有2个,所以第二位为4。

  用 1 / 2! = 0余1,则a[3] = 0,即在第三位之后没有小于第三位的数,所以第三位为1。

  用 1 / 1! = 1余0,则a[4] = 1,即在第四位之后小于第四位的数有1个,所以第四位为5。

  最后一位自然就是剩下的数2。

  通过以上分析,所求排列组合为 34152。

  依然是用线段树维护vis数组,建树时每一位都先赋值为1,表示所有数均未出现。

  设对于当前这一位i,变进制数为a[i],要求的数为x。目标是要在未出现的数中找比x小的数的个数为a[i]个的数的位置,相当于在区间[1,x]中找a[i]+1。

  此处将a[i]+1记为s[i]。用二分查找x的位置:对于每一位s[i],先求出左子树比x小的数的个数为sum,再看s是否有s[i]个:若有,说明结果在左子树,则继续往左子树找s[i];若没有,则往右子树找s[i] - sum。

  查找完后将vis[x]的值修改为0。

  代码如下:

int search(int num)

    int l=1,r=n;
    while(l<r)
    
        int mid=l+r>>1;
        int find=query(1,1,n,l,mid);
        
        if(find>=num) r=mid;
        else
            l=mid+1;
            num-=find;
        
    
    return r;


void R_Cantor(int num)

    num--;  
    memset(a,0,sizeof a);
    build_tree(1,1,n);
    for(int i=1;i<=n;i++)
    
        a[i]=num/(jc[n-i]);
        a[i]=search(a[i]+1);
        update(1,1,n,a[i],0);
        num%=jc[n-i];
    
    
    for(int i=1;i<=n;i++)printf("%d ",a[i]);
    puts("");    

附完整代码

#include <algorithm>
#include <cstring>
#include <cstdio>
#include <iostream>
using namespace std;
const int N = 1e5+10;

int n;
int a[N],tree[3*N];
int jc[10]=1,1,2,6,24,120,720,5040,40320,362880; 

void out()

    for(int i=1;i<=14;i++)
    
        printf("tree[%d] = %d\n",i,tree[i]);
    
    puts("");


void build_tree(int node,int start,int end)

    if(start==end)
    
        tree[node]=1;
        return;
    
    int mid=start+end>>1;
    int left=2*node;
    int right=2*node+1;
    build_tree(left,start,mid);
    build_tree(right,mid+1,end);
    tree[node]=tree[left]+tree[right];


void update(int node,int start,int end,int idx,int val)

    if(start==end)
    
        tree[node]=val;
        return;
    
    int mid=start+end>>1;
    int left=2*node;
    int right=2*node+1;
    if(idx<=mid)update(left,start,mid,idx,val);
    else update(right,mid+1,end,idx,val);
    tree[node]=tree[left]+tree[right];


int query(int node,int start,int end,int l,int r)

    if(end<l || start>r)return 0;
    else if(start>=l && end<=r)return tree[node];
    
    int mid=start+end>>1;
    int left=2*node;
    int right=2*node+1;
    
    return query(left,start,mid,l,r) + query(right,mid+1,end,l,r);


int Cantor()

    int ans=0;
    for(int i=1;i<=n-1;i++)
    
        int now=a[i];
        now-=query(1,1,n,1,a[i])+1;
        update(1,1,n,a[i],1);
        ans=(ans+now)*(n-i);
    
    return ans+1;  //所有全排列中比该序列小的有ans个,故该序列排在第ans+1位 


int search(int num)

    int l=1,r=n;
    while(l<r)
    
        int mid=l+r>>1;
        int find=query(1,1,n,l,mid);
        
        // 先看左子树中未出现的比要求的数小的数的个数够不够num个 
        // 若足够,则继续往左子树找num 
        // 若不够,则继续往右子树找 (num-已找到的个数) 
        
        if(find>=num) r=mid;
        else
            l=mid+1;
            num-=find;
        
    
    return r;


void R_Cantor(int num)

    num--; //该序列排在第num位,故比其小的全排列有num-1个。 
    memset(a,0,sizeof a);
    build_tree(1,1,n);
    for(int i=1;i<=n;i++)
    
        a[i]=num/(jc[n-i]);
        a[i]=search(a[i]+1);
        update(1,1,n,a[i],0);
        num%=jc[n-i];
    
    
    for(int i=1;i<=n;i++)printf("%d ",a[i]);
    puts("");    


int main()

    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    
    memset(tree,0,sizeof tree);
    
    int ans=Cantor();
    
//    R_Cantor(62);

    printf("%d\n",ans);
    return 0;

 

以上是关于数据结构——康托展开与逆康托展开的主要内容,如果未能解决你的问题,请参考以下文章

康托展开

康托展开 / 逆康托展开

康托展开 & 逆康托展开

康托展开和逆康托展开

[学习][Math]康托展开和逆康托展开

逆康托展开