圆周率是如何计算的
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了圆周率是如何计算的相关的知识,希望对你有一定的参考价值。
参考技术A 圆周率是数学中的重要常数之一,它是指表示圆的周长与直径比值的数学常数,用希腊字母π表示。π也等于圆形之面积与半径平方之比,近似值约等于3.14159265359,是精确计算圆周长、圆面积、球体积等几何形状的关键值。那么圆周率是怎么计算出来的呢?下面与小编一起来了解一下吧!关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=3.125,而古埃及人使用π=3.1605。中国古籍里记载有“圆径一而周三”,即π=3,这也是《圣经》旧约中所记载的π值。在古印度耆那教的经典中,可以找到π≈3.1622的说法。这些早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。由于在当时,圆周长无法准确测量出来,想要通过估算法得到精确的π值当然也不可能。
无独有偶,中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步逼近圆面积来计算圆周率的。约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出3.1415926<π<3.1415927,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。
17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。
关于π值的研究,革命性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。以后又发现了许多类似的公式,π的计算精度也越来越高。1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。可惜后来发现其结果从528位开始出错了。
电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。
人类对π的认识过程,也从一个侧面反映了数学发展的历程。在人类历史上,从没有对一个数学常数有过如此狂热的数值计算竞赛。不过,有10位小数就足以满足几乎所有的实际计算需要,在日常生活中一般取π=3.1416就足够了。关于π的传奇故事已经成为一段历史,读者们也不必再将时间花在计算或者背诵π的数值上了。
以上就是小编的分享了,希望可以帮助到大家。
求圆周率的计算公式?
想练下自己的记忆力,听说记圆周率的倍数是个办法。
最有可能是使用连分数法:由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。若是对这些感兴趣可以上网找找,这里有个网站仅供参考 http://zhidao.baidu.com/question/29237343.html 参考技术A 圆周率(Pi)是圆的周长与直径的比值,公式为:圆周率用希腊字母
π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙(observable
universe)的大小,误差还不到一个原子的体积
。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
参考资料来源:百度百科-圆周率
(圆的周长与直径的比值) 参考技术B
圆周率的计算公式有以下几个:
1、马青公式 π=16arctan1/5-4arctan1/239
2、拉马努金公式
3、AGM(Arithmetic-Geometric Mean)算法 高斯-勒让德公式
4、波尔文四次迭代式
5、bailey-borwein-plouffe算法
6、丘德诺夫斯基公式
7、莱布尼茨公式
圆周率的记忆方法:
【中文背圆周率的口诀】
1π=3.14
2π=6.28
3π=9.42
4π=12.56
5π=15.7
6π=18.84
7π=21.98
8π=25.12
参考技术C 就是把圆的内接三角形的面积算出来,让它近似等于圆的面积,然后利用大学的无限思想可以算出圆的面积和半径的关系 参考技术D 圆周率=圆的周长÷圆的直径或
圆周率=圆的面积÷圆的半径的平方
以上是关于圆周率是如何计算的的主要内容,如果未能解决你的问题,请参考以下文章