任意模数NTT(MTT)模板

Posted zzctommy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了任意模数NTT(MTT)模板相关的知识,希望对你有一定的参考价值。

记住代码里3个模数,它们的原根都是3.考虑通过3个模数下的答案用中国剩余定理乱搞,得出答案。常数较大。有个什么拆系数FFT不会。

P4245 【模板】任意模数NTT

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rint register int
const int mod[3]={469762049,998244353,1004535809};
const int N=400010;
int n,m,p,l,lim,rev[N],a[3][N],b[3][N];
inline int rd(){
   int x=0,f=1;
   char ch=getchar();
   while(!isdigit(ch)){if(ch==‘-‘)f=-1;ch=getchar();}
   while(isdigit(ch)) x=x*10+(ch^48),ch=getchar();
   return x*f;
}
LL qpow(LL n,LL k,LL P) {
	LL res=1;n%=P;
	while(k) {
		if(k&1)res=res*n%P;
		n=n*n%P;k>>=1;
	}
	return res;	
}
inline void MTT(int *a,int P,int g) {
	for(rint i=0;i<lim;++i)
		if(i>rev[i])swap(a[i],a[rev[i]]);
	for(rint i=1;i<lim;i<<=1) {
		int wn=qpow(g,(P-1)/(i<<1),P);
		for(rint j=0;j<lim;j+=(i<<1)) {
			int w0=1;
			for(rint k=0;k<i;++k,w0=1ll*w0*wn%P) {
				int X=a[j+k],Y=1ll*w0*a[i+j+k]%P;
				a[j+k]=(X+Y)%P;
				a[i+j+k]=(X-Y+P)%P;
			}
		}
	}
}
LL get(int i) {
	LL x=a[0][i]+(a[1][i]-a[0][i]+mod[1])*qpow(mod[0],mod[1]-2,mod[1])%mod[1]*mod[0];
	LL y=(x%p+(a[2][i]-x%mod[2]+mod[2])*qpow(1ll*mod[0]*mod[1]%mod[2],mod[2]-2,mod[2])%mod[2]*mod[0]%p*mod[1]%p)%p;
	return y;
} 
signed main() {
	n=rd(),m=rd(),p=rd();
	for(rint i=0;i<=n;++i)a[0][i]=a[1][i]=a[2][i]=rd()%p;
	for(rint i=0;i<=m;++i)b[0][i]=b[1][i]=b[2][i]=rd()%p;
	lim=1;while(lim<=n+m)lim<<=1,++l;
	for(rint i=0;i<lim;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
	for(rint i=0;i<3;++i)MTT(a[i],mod[i],3);
	for(rint i=0;i<3;++i)MTT(b[i],mod[i],3);
	for(rint i=0;i<3;++i)
		for(rint j=0;j<lim;++j)
			a[i][j]=1ll*a[i][j]*b[i][j]%mod[i];
	for(rint i=0;i<3;++i)MTT(a[i],mod[i],qpow(3,mod[i]-2,mod[i]));
	for(rint i=0;i<3;++i) {
		int inv=qpow(lim,mod[i]-2,mod[i]);
		for(rint j=0;j<lim;++j)
			a[i][j]=1ll*a[i][j]*inv%mod[i];
	}
	for(rint i=0;i<=n+m;++i)printf("%lld%c",get(i)," 
"[i==n+m]); 
	return 0;
}

以上是关于任意模数NTT(MTT)模板的主要内容,如果未能解决你的问题,请参考以下文章

洛谷P4245 模板MTT(任意模数NTT)

MTT:任意模数NTT

洛谷 - P4245 模板任意模数多项式乘法(三模NTT+中国剩余定理/五次FFT的MTT)

MTT 模板(任意模数)

P4245 模板任意模数多项式乘法(NTT)

[题解] Luogu P4245 [模板]任意模数NTT