P4245 模板任意模数多项式乘法(NTT)
Posted Jozky86
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P4245 模板任意模数多项式乘法(NTT)相关的知识,希望对你有一定的参考价值。
题意:
P4245 【模板】任意模数多项式乘法
题解:
NTT模板,记录一下
代码:
#include <bits/stdc++.h>
using namespace std;
#define REP(i, a, b) for (int i= (a), _end_= (b); i < _end_; ++i)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define mp make_pair
#define x first
#define y second
#define pb push_back
#define SZ(x) (int((x).size()))
#define ALL(x) (x).begin(), (x).end()
template <typename T> inline bool chkmin(T& a, const T& b)
{
return a > b ? a= b, 1 : 0;
}
template <typename T> inline bool chkmax(T& a, const T& b)
{
return a < b ? a= b, 1 : 0;
}
typedef long long LL;
const int oo= 0x3f3f3f3f;
int Mod;
const int max0= 262144;
struct comp
{
double x, y;
comp() : x(0), y(0)
{
}
comp(const double& _x, const double& _y) : x(_x), y(_y)
{
}
};
inline comp operator+(const comp& a, const comp& b)
{
return comp(a.x + b.x, a.y + b.y);
}
inline comp operator-(const comp& a, const comp& b)
{
return comp(a.x - b.x, a.y - b.y);
}
inline comp operator*(const comp& a, const comp& b)
{
return comp(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
inline comp conj(const comp& a)
{
return comp(a.x, -a.y);
}
const double PI= acos(-1);
int N, L;
comp w[max0 + 5];
int bitrev[max0 + 5];
void fft(comp* a, const int& n)
{
REP(i, 0, n) if (i < bitrev[i]) swap(a[i], a[bitrev[i]]);
for (int i= 2, lyc= n >> 1; i <= n; i<<= 1, lyc>>= 1)
for (int j= 0; j < n; j+= i) {
comp *l= a + j, *r= a + j + (i >> 1), *p= w;
REP(k, 0, i >> 1)
{
comp tmp= *r * *p;
*r= *l - tmp, *l= *l + tmp;
++l, ++r, p+= lyc;
}
}
}
inline void fft_prepare()
{
REP(i, 0, N) bitrev[i]= bitrev[i >> 1] >> 1 | ((i & 1) << (L - 1));
REP(i, 0, N) w[i]= comp(cos(2 * PI * i / N), sin(2 * PI * i / N));
}
inline void conv(int* x, int* y, int* z)
{
REP(i, 0, N)(x[i]+= Mod)%= Mod, (y[i]+= Mod)%= Mod;
static comp a[max0 + 5], b[max0 + 5];
static comp dfta[max0 + 5], dftb[max0 + 5], dftc[max0 + 5], dftd[max0 + 5];
REP(i, 0, N) a[i]= comp(x[i] & 32767, x[i] >> 15);
REP(i, 0, N) b[i]= comp(y[i] & 32767, y[i] >> 15);
fft(a, N), fft(b, N);
REP(i, 0, N)
{
int j= (N - i) & (N - 1);
static comp da, db, dc, dd;
da= (a[i] + conj(a[j])) * comp(0.5, 0);
db= (a[i] - conj(a[j])) * comp(0, -0.5);
dc= (b[i] + conj(b[j])) * comp(0.5, 0);
dd= (b[i] - conj(b[j])) * comp(0, -0.5);
dfta[j]= da * dc;
dftb[j]= da * dd;
dftc[j]= db * dc;
dftd[j]= db * dd;
}
REP(i, 0, N) a[i]= dfta[i] + dftb[i] * comp(0, 1);
REP(i, 0, N) b[i]= dftc[i] + dftd[i] * comp(0, 1);
fft(a, N), fft(b, N);
REP(i, 0, N)
{
int da= (LL)(a[i].x / N + 0.5) % Mod;
int db= (LL)(a[i].y / N + 0.5) % Mod;
int dc= (LL)(b[i].x / N + 0.5) % Mod;
int dd= (LL)(b[i].y / N + 0.5) % Mod;
z[i]= (da + ((LL)(db + dc) << 15) + ((LL)dd << 30)) % Mod;
}
}
int main()
{
// #ifndef ONLINE_JUDGE
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
// #endif
int n, m;
static int a[max0 + 5], b[max0 + 5], c[max0 + 5];
scanf("%d%d%d", &n, &m, &Mod), ++n, ++m;
REP(i, 0, n) scanf("%d", a + i);
REP(i, 0, m) scanf("%d", b + i);
L= 0;
for (; (1 << L) < n + m - 1; ++L)
;
N= 1 << L;
fft_prepare();
conv(a, b, c);
REP(i, 0, n + m - 1)(c[i]+= Mod)%= Mod, printf("%d ", c[i]);
printf("\\n");
return 0;
}
以上是关于P4245 模板任意模数多项式乘法(NTT)的主要内容,如果未能解决你的问题,请参考以下文章