数据结构|-二叉查找树(二叉搜索树)的链式存储结构的实现

Posted wq-kingstrong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据结构|-二叉查找树(二叉搜索树)的链式存储结构的实现相关的知识,希望对你有一定的参考价值。

二叉排序树,又称为二叉查找树。

它或者是一棵空树,或者是具有下列性质的二叉树。

  • 若它的左子树不为空,则左子树上所有的结点的值均小于根结构的值;
  • 若它的右子树不为空,则右字数上所有结点的值均大于它的根结点的值;
  • 它的左右子树也分别为二叉排序树

优点:

  • 1,排序方便
  • 2,方便查找
  • 3,方便插入和删除

技术分享图片

 


 

二叉排序树的插入数据:

因为二叉排序树中所有的数都符合排序树的特点,所以任意插入一个数时,都能在遍历树的过程中找到其应该放置的正确位置

 

二叉排序树的删除数据:

三种情况:

  • 1,叶子结点:直接删除该叶子(置空)
  • 2,仅有左子树或者右子数的结点:将其子树的值赋给结点,删除这个子树
  • 3,左右子树都有:找到结点的右子树中最小的结点(左子树的左的……的左子树)赋值给待删结点,然后删除那个最小的结点

 

 技术分享图片

 

 


 

代码部分:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace TestFun4
{
    class Program
    {
        static void Main(string[] args)
        {
            BSTree tree = new BSTree();
            int[] data = { 62, 58, 88, 47, 73, 99, 35, 51, 93, 37 };
            foreach (int item in data)
            {
                //将数组中的数装进树中去
                tree.Add(item);
            }
            Console.WriteLine("树的中序遍历:");
            tree.MiddleTravelsal();
            Console.WriteLine();
            Console.WriteLine("99是否存在树中:" + tree.Find(99));
            Console.WriteLine("11是否存在树中:" + tree.Find(11));
            tree.Delete(35);
            Console.WriteLine("删除35之后的中序遍历");
            tree.MiddleTravelsal();
            Console.WriteLine();
            tree.Delete(62);
            Console.WriteLine("删除62之后的中序遍历");
            tree.MiddleTravelsal();

            Console.ReadKey();
        }
    }

    /// <summary>
    /// 结点类、存储该结点的左子树、右子树、父亲
    /// </summary>
    class BSNode
    {
        public BSNode LeftChild { get; set; }
        public BSNode RightChild { get; set; }
        public BSNode Parent { get; set; }
        public int Data { get; set; }

        public BSNode() { }
        public BSNode(int item)
        {
            this.Data = item;
        }
    }

    class BSTree
    {
        BSNode root = null;

        //添加数据
        public void Add(int item)
        {
            //以该数据创建一个新结点
            BSNode newNode = new BSNode(item);
            //如果根节点为空,直接让插入的数据成为根节点
            if (root == null)
            {
                root = newNode;
            }
            else
            {
                BSNode temp = root;
                //遍历整棵树找到最适合插入数据的位置
                while (true)
                {
                    if (item >= temp.Data)//放在temp右边
                    {
                        if (temp.RightChild == null)//如果temp无右子树,就把newnode作为temp的右子树
                        {
                            temp.RightChild = newNode;
                            newNode.Parent = temp;
                            break;
                        }
                        else//否则继续往下遍历
                        {
                            temp = temp.RightChild;
                        }
                    }
                    else//放在temp左边
                    {
                        if (temp.LeftChild == null)
                        {
                            temp.LeftChild = newNode;
                            newNode.Parent = temp;
                            break;
                        }
                        else
                        {
                            temp = temp.LeftChild;
                        }
                    }
                }
            }
        }

        //中序遍历(中序遍历就是二叉排序树的从小到大排序)
        public void MiddleTravelsal()
        {
            MiddleTravelsal(root);
        }
        private void MiddleTravelsal(BSNode node)
        {
            if (node == null) return;
            MiddleTravelsal(node.LeftChild);
            Console.Write(node.Data + "  ");
            MiddleTravelsal(node.RightChild);
        }

        //判断树中是否已存在item这个值
        public bool Find(int item)
        {
            BSNode temp = root;
            while (true)
            {
                if (temp == null) return false;
                if (temp.Data == item) return true;
                if (item > temp.Data)
                    temp = temp.RightChild;
                else
                    temp = temp.LeftChild;
            }
        }

        //删除某个值所在的结点
        public bool Delete(int item)
        {
            BSNode temp = root;
            while (true)
            {
                //temp==null表示树中没有找到该值,返回false表示删除失败
                if (temp == null) return false;
                if (temp.Data == item)
                {
                    DeleteNode(temp);
                    return true;
                }
                if (item > temp.Data)
                    temp = temp.RightChild;
                else
                    temp = temp.LeftChild;
            }
        }
        //删除结点的具体操作
        private void DeleteNode(BSNode node)
        {
            //情况1:要删除的结点没有左右子树
            if (node.LeftChild == null && node.RightChild == null)
            {
                if (node.Parent == null)//删除根结点
                    root = null;
                else if (node.Parent.LeftChild == node)//要删除的结点是其父亲的左子树时候
                    node.Parent.LeftChild = null;//删除左子树就是删除该结点
                else if (node.Parent.RightChild == node)//右子树的情况
                    node.Parent.RightChild = null;
                return;
            }
            //情况2:要删除的结点有右子树没有左子树
            if (node.LeftChild == null && node.RightChild != null)
            {
                node.Data = node.RightChild.Data;//将其右子树作为被删除的这个结点
                node.RightChild = null;
                return;
            }
            //情况3:要删除的结点有左子树没有右子树
            if (node.LeftChild != null && node.RightChild == null)
            {
                node.Data = node.LeftChild.Data;
                node.LeftChild = null;
                return;
            }
            //情况4:要删除的结点有左右两个子树
            BSNode temp = node.RightChild;//找到右子树所包含的所有结点中最小的结点替换现在的结点
            while (true)
            {
                //左子树的左子树的左子树的…的左子树就是整个子树中最小的结点
                if (temp.LeftChild != null)
                    temp = temp.LeftChild;
                else
                    break;
            }
            node.Data = temp.Data;//数值替换
            DeleteNode(temp);//递归调用:把temp这个结点删除(因为temp无子树,所以会递归到情况1来删除这个结点)
        }

    }
}

结果:

技术分享图片

 

以上是关于数据结构|-二叉查找树(二叉搜索树)的链式存储结构的实现的主要内容,如果未能解决你的问题,请参考以下文章

二叉树链式结构

二叉树链式存储和遍历

数据结构树与树的表示二叉树存储结构及其遍历二叉搜索树平衡二叉树堆哈夫曼树与哈夫曼编码集合及其运算

数据结构C语言 《四》二叉树链式的实现及操作《下》

数据结构C语言 《四》二叉树链式的实现及操作《下》

树结构的基础部分