威尔逊定理及证明

Posted stddddd

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了威尔逊定理及证明相关的知识,希望对你有一定的参考价值。

给威尔逊爵士跪了!!!

1、内容

首先,介绍一下什么是威尔逊定理:

  1、p为素数。

  2、(p-1)! ≡ -1 (mod p)。

有1和2互为充要条件。

2、证明

就证明1为2的充分条件吧。

定义集合A={2,3,4,......,p-2},如果对于A中每一个元素a,均存在A中另一个元素b,使得ab ≡ 1 (mod p),且a不同时,b一定不同,则命题一定成立。

先证对于A中每一个元素a,均存在A中另一个元素b,使得ab ≡ 1 (mod p)。首先,显然1 ≤ b ≤ p-1。然后,假设b == 1,则ab = a ≠ 1,不成立;再假设b == p-1,则ab = a*(p-1) = ap-a ≡ p-a (mod p),若p-a == 1的话,须满足a == p-1,不成立。得证。

再证不同的a对应的b不相同。假设存在两个不同的a对应的b相同,再假设这两个a分别为a1,a2(a1 < a2)。则有(a2-a1)*b ≡ 0 (mod p)。而(a2-a1)、b均小于p且p为素数,故显然不成立。

以上是关于威尔逊定理及证明的主要内容,如果未能解决你的问题,请参考以下文章

威尔逊定理及其证明

minimax定理证明

威尔逊定理

威尔逊定理

数论及其应用——同余式定理

初等数论四大定理欧拉定理,费马小定理