基底 / 线性组合 / 线性无关(相关)- 图解线性代数 02

Posted mjerry

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基底 / 线性组合 / 线性无关(相关)- 图解线性代数 02相关的知识,希望对你有一定的参考价值。

本文转自公众号---遇见数学---图解数学---线性代数部分

感谢遇见数学工作组将大学课本晦涩难懂、故作高深的数学知识,用通俗易懂而又生动有趣的方法解释出来。

 

基底

在二维线性空间中, 只要用两个特殊的向量就可以来用定位(表示)出任意向量:

技术分享图片

空间中的任何向量都是可以通过缩放这两个向量再相加表示出来. 现在想象, 譬如向量 (3,2) 就是沿着 i 的方向拉伸 3 倍, 再沿着 j 方向 拉伸 2 倍的向量相加结果. 

技术分享图片

这样特殊的向量称之为基(Basis, 或基底), 任何二维向量都可以由这两个向量的线性组合表示出来, 其中 a, b 为标量.

技术分享图片

观察下面动图显示, 当两个标量自由变化, 通过向量加法与向量数乘这两者基础运算, 就能获得所有二维中可能的向量: 

技术分享图片

基底的选取有各种各样的方式, 但不同的选取 可能会有 3 种情况, 观察下面动图中选取 i 和 j 作为基底出现:

  • 也可以线性表示出空间中任意的二维向量;

  • 如果两个向量恰好共线时候, 所产生的向量的终点被限制在一条过原点的直线上;

  • 两个向量都是零向量, 其组合向量是零向量. 

技术分享图片

所有由向量 i 和 j 线性组合而获得所有可能的向量集合, 称之为两个向量张成的空间(Span). 

 

用上面的图形来说明: 对大部分二维向量来说, 两个向量所张成的空间是所有二维向量的集合, 可以称之为基底;  但当共线时, 张成的空间就是一条直线, 不能构成基底.

 

 

 

三维空间的基底

再来看看三维空间中的两个方向不同的向量所张成的空间就是两者所有的线性组合, 张成了一个过原点的平面

技术分享图片

 对三个基底向量分别进行缩放, 然后把结果相加, 而这三个向量所有可能的线性组合构成了他们张成的空间: 

技术分享图片

 

 

 

线性相关

考虑 三维中第三个向量已经落在前两个向量所张成的平面之中, 那么就可以被这两个向量线性表示; 或者二维中两个向量共线, 那么可以由另一个线性表示出来.

 技术分享图片

这种情况称之为线性相关(Linearly Dependent),  也就是说存在有向量对张成空间而言上多余的, 即便删除掉也不会对张成的空间有任何影响. 

反之称为线性无关, 也就是没有任何向量可以由其他向量经过线性组合表示出来, 每个向量对所张成的空间都做出了"贡献". 

 

 

以上是关于基底 / 线性组合 / 线性无关(相关)- 图解线性代数 02的主要内容,如果未能解决你的问题,请参考以下文章

线性代数本质2:线性组合和线性相关和线性无关以及张成的空间

线性空间和异或空间(线性基)bzoj4004贪心+高斯消元

向量空间中的:线性相关与线性无关

向量空间中的:线性相关与线性无关

线性基

高数中的线性相关,线性无关,内积,点乘,投影的概念