二叉搜索树的操作集
Posted tangyjhappen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉搜索树的操作集相关的知识,希望对你有一定的参考价值。
函数接口定义:
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("
");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found
", X);
else {
printf("%d is found
", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key
", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key
", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("
");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
我的代码
BinTree Insert(BinTree BST, ElementType X) {
if (!BST) {
BST = (struct TNode *)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = BST->Right = NULL;
}
else {
if (X > BST->Data) BST->Right = Insert(BST->Right, X);
else if (X < BST->Data) BST->Left = Insert(BST->Left, X);
}
return BST;
}
Position Find(BinTree BST, ElementType X) {
BinTree tmp = BST;
while (tmp) {
if (X > tmp->Data) tmp = tmp->Right;
else if (X < tmp->Data) tmp = tmp->Left;
else return tmp;
}
return NULL;
}
Position FindMin(BinTree BST) {
BinTree tmp = BST;
if (!tmp) return NULL;
while (tmp->Left) {
tmp = tmp->Left;
}
return tmp;
}
Position FindMax(BinTree BST) {
BinTree tmp = BST;
if (!tmp) return NULL;
while (tmp->Right) {
tmp = tmp->Right;
}
return tmp;
}
BinTree Delete(BinTree BST, ElementType X) {
Position tmp;
if (!BST) {
printf("Not Found
");
}else {
if (X > BST->Data) BST->Right = Delete(BST->Right, X);
else if (X < BST->Data) BST->Left = Delete(BST->Left, X);
else {
if (BST->Left&&BST->Right) {
tmp = FindMin(BST->Right);
BST->Data = tmp->Data;
BST->Right = Delete(BST->Right, tmp->Data);
}
else {
tmp = BST;
if (!BST->Left) {
BST = BST->Right;
}
else if (!BST->Right) {
BST = BST->Left;
}
free(tmp);
}
}
}
return BST;
}
以上是关于二叉搜索树的操作集的主要内容,如果未能解决你的问题,请参考以下文章