奇异值分解(SVD)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了奇异值分解(SVD)相关的知识,希望对你有一定的参考价值。

参考技术A 奇异值分解(SVD)是一种矩阵因子分解方法。任意一个m*n的矩阵,都可以表示为三个矩阵的乘积(因子分解)的形式,分别是m阶正交矩阵、由降序排列的非负的对角线元素组成的m*n矩阵和n阶正交矩阵,称为该矩阵的奇异值分解。矩阵的奇异值分解一定存在,但不唯一。奇异值分解可以看作出矩阵数据压缩的一种方法。即用因子分解的方式近似地表示原始矩阵,这种矩阵在平方损失意义下的最优近似。

矩阵的奇异值分解是指,将一个非零的m*n实矩阵 ,表示为以下三个实矩阵乘积形式的运算,即进行矩阵的因子分解

其中U是m阶正交矩阵,V是n阶正交矩阵, 是由降序排列的非负的对角元素组成的 的矩形对角矩阵

称为矩阵的奇异值分解, 称为矩阵A的奇异值, 的列向量称为左奇异向量, 的列向量成为右奇异向量

紧凑奇异值分解是与原始矩阵等秩的奇异值分解,截断奇异值分解是比原始矩阵降低秩的奇异值分解。在实际应用中,常常需要对矩阵的数据进行压缩,将其近似表示,奇异值分解提供了一种方法。奇异值分解是在平方损失意义下对矩阵的最优近似。紧奇异值分解对应着无损压缩,截断奇异值分解对应着有损压缩

设有 实矩阵A,其秩为rank(A) = r, ,则称 为A的紧奇异值分解,即

其中 是 矩阵, 是 矩阵, 是r阶对角矩阵,矩阵 由完全奇异分解中的前r列,矩阵 由V的前r列,矩阵 由 的前r个对角线元素得到,紧奇分解的对角矩阵 的秩与原始矩阵A的秩相等

在矩阵的奇异值分解中,只取最大的k个奇异值(k < r,r为矩阵的秩)对应的部分,就得到矩阵的截断奇异值分解。实际应用中提到的矩阵的奇异值分解,通常指截断奇异值分解

设A为 实矩阵,其秩rank(A)=r,且, ,则称 为矩阵A的截断奇异值分解

其中 是 矩阵, 是n*k矩阵, 是k阶对角矩阵;矩阵 由完全奇异分解U的前k列,矩阵 由V的前k列,矩阵 由 的前k个对角线元素得到。对角矩阵 的秩比原始矩阵A的秩低。

从线性变换的角度理解奇异值分解, 矩阵A表示从n维空间 到m空间 的一个线性变换,

x和Ax分别表示各自空间的向量。线性变换可以分解为三个简单的变换:一个坐标系的旋转或反射变换、一个坐标轴的缩放变换、另一个坐标系的旋转或反射。

对矩阵A进行奇异值分解,得到 ,V和U都是正交矩阵,所以V的列向量 构成空间的一组标准正交基,表示 中的正交坐标系的旋转或反射;U的列向量 构成 空间的一组标准正交基,表示 中正交坐标系的旋转或反射; 的对角元素 是一组非负实数,表示 中原始正坐标系坐标轴的 倍的缩放变换。

任意一个向量 ,经过基于 的线性变换,等价于经过坐标系的旋转或反射变换 ,坐标轴的缩放变换 ,以及坐标轴的旋转或反射变换U,得到相框

矩阵A是 的正交实矩阵,则矩阵 是n阶实对称矩阵,因而 的特征值都是实数,并且存在一个n阶正实矩阵V实现 的对角化,使得 成立,其中 是n阶对角矩阵,其对角元素由 的特征值组成。

而且, 的特征值都是非负的。事实上,令 是 的一个特征值,x是对应的特征向量,则

于是

可以假设正交矩阵V的列排列使得对应的特征值形成降序排列。

计算特征值的平方根(实际上解释矩阵A的奇异值)

设矩阵A的秩是r,rank(A)=r,则矩阵 的秩也是r。由于 是对称矩阵,它的秩等于正的特征值的个数。

对应的



其中 为 的特征值对应的特征向量, 为0特征值对应的特征向量。


这就是矩阵A的奇异值分解中的n阶正交矩阵V



则 是个一个r阶对角矩阵,其对角线元素为按降序排列的正的 ,于是 矩形对角矩阵 可以表示为

这就是矩阵A的奇异值分解中的 矩阵对角矩阵

接着构造m阶正交实矩阵U


则有

的列向量构成正交基是因为

对 的非零空间的一组标准正交基 ,令

并令

以上是关于奇异值分解(SVD)的主要内容,如果未能解决你的问题,请参考以下文章

奇异值分解SVD

什么是奇异值?奇异值分解是什么?SVD分解详解及实战

奇异值分解(SVD)

奇异值分解的意义

SVD(奇异值矩阵分解) 转载

矩阵奇异值分解SVD