奇异值分解的意义

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了奇异值分解的意义相关的知识,希望对你有一定的参考价值。

参考技术A 问题一:MATLAB中SVD奇异值分解是什么作用? 奇异值分解 (sigular value deposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩

问题二:值分解和奇异值分解有什么不同 你把两者的定义都搞清楚自然就能看到有什么不同
如果问两者有和联系才比较合理,不过你还没到那个程度

问题三:奇异值分解为什么奇异值要递减排列? 奇异值表示相应的部分构成的矩阵具有的能量可以代表原来的整个矩阵,

问题四:MATLAB中SVD奇异值分解是什么作用 答案1:: 奇异值分解 (sigular value deposition,SVD) 是另一
种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花
上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交
矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差法和数据压缩
答案2:: 奇异值分解是线性代数中一种重要的矩阵分解,在信号处
啊?答案3:: [U,S,V]=svd(A)奇异值分解,就是要把矩阵A分解成
U*S*V' (V'代表V转置).其中U S是正交矩阵(复数域对应为酉矩阵)
奇异值分解可以用来求矩阵的逆,数据压缩等等,不过具体的用法不
是几句话就能说清楚的。总之,奇异值分解特别重要。
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
求matlab中的矩阵的奇异值分解(SVD)程序
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
最近在翻译matlab代码为VC代码,遇到SVD奇异值分解卡住了。
:::::::::::::::::::请参考以下相关问题::::::::::::::::::::
:::::::::::::::::::请参考以下相关问题:::::::::::::::::::::::::::::::::::::::请参考以下相关问题::::::::::::::::::::

paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。

原文:We recommend a singular value decomposition

简介

SVD实际上是数学专业内容,但它现在已经渗入到不同的领域中。SVD的过程不是很好理解,因为它不够直观,但它对矩阵分解的效果却非常好。比如,Netflix(一个提供在线电影租赁的公司)曾经就悬赏100万美金,如果谁能提高它的电影推荐系统评分预测准确率提高10%的话。令人惊讶的是,这个目标充满了挑战,来自世界各地的团队运用了各种不同的技术。最终的获胜队伍"BellKor‘s Pragmatic Chaos"采用的核心算法就是基于SVD。

SVD提供了一种非常便捷的矩阵分解方式,能够发现数据中十分有意思的潜在模式。在这篇文章中,我们将会提供对SVD几何上的理解和一些简单的应用实例。

线性变换的几何意义(The geometry of linear transformations)

让我们来看一些简单的线性变换例子,以 2 X 2 的线性变换矩阵为例,首先来看一个较为特殊的,对角矩阵:

技术分享

从几何上讲,M 是将二维平面上的点(x,y)经过线性变换到另外一个点的变换矩阵,如下图所示

技术分享

变换的效果如下图所示,变换后的平面仅仅是沿 X 水平方面进行了拉伸3倍,垂直方向是并没有发生变化。

技术分享

现在看下矩阵

技术分享

这个矩阵产生的变换效果如下图所示

技术分享

   这种变换效果看起来非常的奇怪,在实际环境下很难描述出来变换的规律 ( 这里应该是指无法清晰辨识出旋转的角度,拉伸的倍数之类的信息)。还是基于上面的对称矩阵,假设我们把左边的平面旋转45度角,然后再进行矩阵 M 的线性变换,效果如下图所示:

 

技术分享

看起来是不是有点熟悉? 对的,经过 M 线性变换后,跟前面的对角矩阵的功能是相同的,都是将网格沿着一个方向拉伸了3倍。

这里的 M 是一个特例,因为它是对称的。非特殊的就是我们在实际应用中经常遇见一些 非对称的,非方阵的矩阵。如上图所示,如果我们有一个 2 X 2 的对称矩阵 M 的话,我们先将网格平面旋转一定的角度,M 的变换效果就是在两个维度上进行拉伸变换了。

用更加数学的方式进行表示的话,给定一个对称矩阵 M ,我们可以找到一些相互正交 Vi ,满足 MVi 就是沿着 Vi 方向的拉伸变换,公式如下:

Mvi = λivi

这里的 λi 是拉伸尺度(scalar)。从几何上看,M 对向量 Vi 进行了拉伸,映射变换。Vi 称作矩阵 M 的特征向量(eigenvector), λi 称作为矩阵 M 特征值(eigenvalue)。这里有一个非常重要的定理,对称矩阵 M 的特征向量是相互正交的。

如果我们用这些特征向量对网格平面进行线性变换的话,再通过 M 矩阵对网格平面进行线性换的效果跟对 M 矩阵的特征向量进行线性变换的效果是一样的。

对于更为普通的矩阵而言,我们该怎么做才能让一个原来就是相互垂直的网格平面(orthogonal grid), 线性变换成另外一个网格平面同样垂直呢?PS:这里的垂直如图所示,就是两根交错的线条是垂直的。

技术分享

经过上述矩阵变换以后的效果如图

技术分享

从图中可以看出,并没有达到我们想要的效果。我们把网格平面旋转 30 度角的话,然后再进行同样的线性变换以后的效果,如下图所示

技术分享

让我们来看下网格平面旋转60度角的时候的效果。

技术分享

嗯嗯,这个看起来挺不错的样子。如果在精确一点的话,应该把网格平面旋转 58.28 度才能达到理想的效果。

技术分享

 



http://blog.sciencenet.cn/blog-696950-699380.html 

以上是关于奇异值分解的意义的主要内容,如果未能解决你的问题,请参考以下文章

转载:奇异值分解(SVD) --- 线性变换几何意义(上)

奇异值分解(SVD)

奇异值分解SVD

转!奇异值分解及几何意义

奇异值分解(SVD) --- 几何意义 (转载)

降维-奇异值分解SVD