C语言用矩阵求解方程组

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C语言用矩阵求解方程组相关的知识,希望对你有一定的参考价值。

yanjiandong1224@163.com
19941224
程序在这个邮箱里,行列式的计算没有问题,好像问题出在了把行列式变换上,就是slove(1,n)这个函数的运算上,那位大神可以看看问题到底出在哪…… 不胜感激!!!

//作品:多元一次方程组的计算
//作者:与你看日出
//日期:2009年4月25日 星期六
//说明:输出值只能是小数(最多六位),如x=1.876546
//Han: 初始设的最多未知数的个数,运行程序后只能比它的个数小
//hang:计算中途中自己改变的未知数的个数
//JUZHEN:初始的示例矩阵
#include <stdio.h>
#include <math.h>
#define Han 200//(可自设)多元一次方程组有n行n+1列(多的一列是等号右边的值),给出行数就能确定矩阵,
#define JUZHEN 1,1,1,1,5,1,2,-1,4,-2,2,-3,-1,-5,-2,3,1,2,11,0//示例一个
main()

int i,j,k,m,n,t,cf,hang=4;
float temp;
float AA[Han][Han+1]=JUZHEN;//定义所要计算的数组
do//判断是否重试

for(i=0;i<hang;i++)//输出所定义的数组

printf("\\n");
for(j=0;j<hang+1;j++)

printf("%g\\t",AA[i][j]);


printf("\\n");
printf("是否自己输入?是:1;否:0");
scanf("%d",&t);
if(t==1)//判断是否自己输入数组


printf("输入未知数的个数");
scanf("%d",&hang);
for(i=0;i<hang;i++)//输入所定义的数组

for(j=0;j<hang+1;j++)

printf("第%d行第%d列的数为:",i+1,j+1);
scanf("%f",&AA[i][j]);



for(k=0;k<hang;k++)//这个大循环将数组的左下角转化为0


while(AA[k][k]==0)//如果第K行K列的那个数为0,则加和重组一行。

for(m=k+1;m<hang;m++)
for(n=k;n<hang+1;n++)

AA[k][n]+=AA[m][n];


for(i=k;i<hang;i++)//将第K列下面变为1

temp=AA[i][k];
for(j=k;j<hang+1;j++)//将每列变为1

AA[i][j]/=temp;


for(i=k+1;i<hang;i++)//将下面的数列与上面的数列相减使其下面为0

for(j=0;j<hang+1;j++)

AA[i][j]-=AA[k][j];



for(k=hang-2;k>=0;k--)//这个大循环将数组的右上角转化为0

for(i=k+1;i<hang+1-1;i++)//将第i列上面变为0

AA[k][hang+1-1]-=AA[k][i]*AA[i][hang+1-1];
AA[k][i]=0;


for(i=0;i<hang;i++)//输出该矩阵(也就是多元一次方程组)的解

printf("\\n");
for(j=0;j<hang+1;j++)

printf("%g\\t",AA[i][j]);


printf("\\n未知数的值为:\\n");
for(i=0;i<hang;i++)//输出该矩阵(也就是多元一次方程组)的解

printf("x(%d)=\\t%g\\n",i+1,AA[i][hang+1-1]);

printf("\\n");
printf("是否再试一次?是:1;否:0");
scanf("%d",&cf);

while(cf==1);//判断是否重试
追问

可以帮忙看一下我的问题在哪里吗?

参考技术A (1)由a2,6,a3成等差数列,
得12=a2+a3…(2分)
又an为等比数列,且a1=2,
故12=2q+2q2…(3分)
解得q=2,或q=-3,
又q>0…(5分),
∴q=2,
∴an=2?2n?1=2n…(7分)
(2)∵bn=log22n=n,

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题。

GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题。不过我想顺便多学习一些有关 SVD 的知识。所以就没直接使用 gsl_fit_linear 函数。

SVD 分解的一些基本概念

关于 SVD 有两篇不错的科普文:

  • A Singularly Valuable Decomposition: The SVD of a Matrix
  • We Recommend a Singular Value Decomposition

建议大家找来读读,这两篇文章似乎都已经有人翻译成中文了。

所谓 SVD,就是把一个矩阵 Am×n 分解为三个特殊矩阵 Um×nSn×nVn×n 的乘积。

Am×n=Um×n?Sn×n?VTn×n

上面式子中的 T 表示矩阵的转置。分解之后的这三个矩阵还要满足些特殊条件,其中 Um×nVn×n 是正交矩阵,也就是满足:

UT?U=IVT?V=I

矩阵 S 是对角矩阵,只有主对角线上的元素非 0

因为矩阵 Um×nSn×nVn×n 的都具有很好的性质,所以这样的分解可以更好的帮助我们了解原始矩阵 A 的性质。

举例来说,如果矩阵 A 是个满秩方阵,那么 A 是可逆的。A 的逆可以写为:

A?1=V?S?1?UT

这里 VU 因为是正交矩阵,所以 V?1=VTU?1=UTS 是对角矩阵,求逆也很简单,就是把主对角线上每个元素取个倒数而已。

GSL 中的相关函数

gsl 中提供了好几个函数来计算 SVD:

  • gsl_linalg_SV_decomp 这个是最基本的,使用 Golub-Reinsch SVD 算法,一般我们用这个就够了。
  • gsl_linalg_SV_decomp_mod 这个是改进后的 Golub-Reinsch SVD 算法,当 M?N 时比 Golub-Reinsch SVD 算法要快。
  • gsl_linalg_SV_decomp_jacobi 这个算法用到了 Jacobi 正交化,号称计算结果比 Golub-Reinsch SVD 算法要更准确。

除此之外,还有个 gsl_linalg_SV_solve 函数。这个就是利用 SVD 的结果来求解线性代数方程组的。

把这几个函数组合一下就可以合成一个求解线性代数方程组 A?x=b的函数了。

下面是函数代码:

    void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x)
    {
        int rows = A->size1;
        int cols = A->size2;
        gsl_vector * work = gsl_vector_alloc (cols);
        gsl_vector * S = gsl_vector_alloc (cols);
        gsl_matrix * U = gsl_matrix_alloc(rows, cols);;
        gsl_matrix * V = gsl_matrix_alloc(cols, cols);

        gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中

        gsl_linalg_SV_decomp( U, V, S, work );
        gsl_linalg_SV_solve ( U, V, S, b, x );

        gsl_vector_free(work);
        gsl_vector_free(S);
        gsl_matrix_free(V);
        gsl_matrix_free(U);
    }

A 是满秩方阵时,计算出来的 x 就是我们一般意义上的方程的解。

下面举一个具体的例子:

????????1.41.63.84.62.62.11.58.08.22.92.11.19.68.40.17.40.75.40.49.99.65.08.88.07.7?????????x=????????1.11.64.79.10.1????????

下面是测试代码:

    void test1()
    {
        double a_data[] = {1.4, 2.1, 2.1, 7.4, 9.6,
                           1.6, 1.5, 1.1, 0.7, 5.0,
                           3.8, 8.0, 9.6, 5.4, 8.8,
                           4.6, 8.2, 8.4, 0.4, 8.0,
                           2.6, 2.9, 0.1, 9.9, 7.7};
        gsl_matrix_view A = gsl_matrix_view_array (a_data, 5, 5);

        double b_data[] = {1.1, 1.6, 4.7, 9.1, 0.1};
        gsl_vector_view b = gsl_vector_view_array (b_data, 5);

        gsl_vector * x = gsl_vector_alloc (5);

        linearSolve_SVD(&A.matrix, &b.vector, x);
        gsl_vector_fprintf (stdout, x, "%f");

        qDebug() << "";
        gsl_vector * bb = gsl_vector_alloc (5);
        gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);

        gsl_vector_fprintf (stdout, bb, "%f");
    }

输出结果如下:

-5.208566
5.736694
-2.537472
-1.029814
0.968151

1.100000
1.600000
4.700000
9.100000
0.100000

可以看出计算结果还是很准确的。

A 的行数大于列数时求得的是最小二乘意义下的解,也就是 ||A?x?b||2 最小的解。下面给个例子:

???2314?52????x=???1136???

测试代码如下:

    void test3()
    {
        double a_data[] = {2, 4,
                           3, -5,
                          1, 2};
        gsl_matrix_view A = gsl_matrix_view_array (a_data, 3, 2);

        double b_data[] = {11, 3, 6};
        gsl_vector_view b = gsl_vector_view_array (b_data, 3);

        gsl_vector * x = gsl_vector_alloc (2);

        linearSolve_SVD(&A.matrix, &b.vector, x);
        gsl_vector_fprintf (stdout, x, "%f");

        qDebug() << "";
        gsl_vector * bb = gsl_vector_alloc (3);
        gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);

        gsl_vector_fprintf (stdout, bb, "%f");
    }

计算结果如下:

3.090909
1.254545

11.200000
3.000000
5.600000

如果 A 不满秩,那么 x 是不唯一的。这时算出来的其中一个解。 下面给个例子:

(1224)?x=(36)

方程很简单,口算就可以出结果,这个方程的解是:

x=(11)+(?21)?t

下面用我们的代码计算一下。

    void test4()
    {
        double a_data[] = {1, 2,
                          2, 4};
        gsl_matrix_view A = gsl_matrix_view_array (a_data, 2, 2);

        double b_data[] = {3, 6};
        gsl_vector_view b = gsl_vector_view_array (b_data, 2);

        gsl_vector * x = gsl_vector_alloc (2);

        linearSolve_SVD(&A.matrix, &b.vector, x);
        gsl_vector_fprintf (stdout, x, "%f");

        qDebug() << "";
        gsl_vector * bb = gsl_vector_alloc (2);
        gsl_blas_dgemv (CblasNoTrans, 1, &A.matrix, x, 0, bb);

        gsl_vector_fprintf (stdout, bb, "%f");
    }

结果是:

-3.400000
3.200000

3.000000
6.000000

可以验算,(?3.4,3.2)T 确实是方程的一个解。其实用 SVD 我们可以求出方程的全部解的,但是我们需要 SV 的值,所以上面的 linearSolve_SVD 函数就不够用了。

下面我们将 SVD 相关的功能封装成一个类,以方便我们提取 SV 的值。
另外,当我们一个 A 有多组 x 需要求解时,也只需要计算一次 SVD 分解,用下面的类能减少很多计算量。

头文件如下:

    #ifndef GSLSINGULARVALUEDECOMPOSITION_H
    #define GSLSINGULARVALUEDECOMPOSITION_H

    #include <gsl/gsl_matrix.h>
    #include <gsl/gsl_vector.h>
    #include <gsl/gsl_blas.h>
    #include <gsl/gsl_linalg.h>
    #include <gsl/gsl_errno.h>

    void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x);

    class GslSVD
    {
    public:
        GslSVD();
        ~GslSVD();
        int SV_decomp(const gsl_matrix * A);
        int SV_decomp_mod(const gsl_matrix * A);
        int SV_decomp_jacobi (gsl_matrix * A);
        int SV_solve(const gsl_vector *b, gsl_vector *x);

        gsl_vector * getVectorS();
        gsl_matrix * getMatrixU();
        gsl_matrix * getMatrixV();

        int trimVectorS(double abseps);
    private:
        gsl_vector * S;
        gsl_matrix * U;
        gsl_matrix * V;

        void alloc_suv(int rows, int cols);
    };

    #endif // GSLSINGULARVALUEDECOMPOSITION_H

cpp 文件如下:

    #include "gsl_SVD.h"

    void linearSolve_SVD(const gsl_matrix * A, const gsl_vector * b, gsl_vector * x)
    {
        int rows = A->size1;
        int cols = A->size2;
        gsl_vector * work = gsl_vector_alloc (cols);
        gsl_vector * S = gsl_vector_alloc (cols);
        gsl_matrix * U = gsl_matrix_alloc(rows, cols);;
        gsl_matrix * V = gsl_matrix_alloc(cols, cols);

        gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中

        gsl_linalg_SV_decomp( U, V, S, work );
        gsl_linalg_SV_solve ( U, V, S, b, x );

        gsl_vector_free(work);
        gsl_vector_free(S);
        gsl_matrix_free(V);
        gsl_matrix_free(U);
    }
    int GslSVD::trimVectorS(double abseps)
    {
        int count = 0;
        for(int i = 0; i < S->size; i++)
        {
            if(fabs(gsl_vector_get(S, i)) < abseps)
            {
                count ++;
                gsl_vector_set(S, i, 0);
            }
        }
        return count;
    }

    gsl_vector * GslSVD::getVectorS()
    {
        if(S == NULL) return NULL;
        gsl_vector * s = gsl_vector_alloc(S->size);
        gsl_vector_memcpy(s, S);
        return s;
    }

    gsl_matrix * GslSVD::getMatrixU()
    {
        if(U == NULL) return NULL;
        gsl_matrix * u = gsl_matrix_alloc(U->size1, U->size2);
        gsl_matrix_memcpy(u, U);
        return u;
    }

    gsl_matrix * GslSVD::getMatrixV()
    {
        if(V == NULL) return NULL;
        gsl_matrix * v = gsl_matrix_alloc(V->size1, V->size2);
        gsl_matrix_memcpy(v, V);
        return v;
    }

    GslSVD::GslSVD()
    {
        S = NULL;
        U = NULL;
        V = NULL;
    }

    void GslSVD::alloc_suv(int rows, int cols)
    {
        if( S != NULL )
        {
            gsl_vector_free(S);
            gsl_matrix_free(U);
            gsl_matrix_free(V);
        }
        S = gsl_vector_alloc (cols);
        U = gsl_matrix_alloc(rows, cols);
        V = gsl_matrix_alloc(cols, cols);
    }

    int GslSVD::SV_decomp(const gsl_matrix * A)
    {
        int rows = A->size1;
        int cols = A->size2;

        gsl_vector * work = gsl_vector_alloc (cols);

        alloc_suv(rows, cols);
        gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
        int ret = gsl_linalg_SV_decomp( U, V, S, work );

        gsl_vector_free(work);

        return ret;
    }

    int GslSVD::SV_decomp_mod(const gsl_matrix * A)
    {
        int rows = A->size1;
        int cols = A->size2;

        gsl_vector * work = gsl_vector_alloc (cols);
        gsl_matrix *X = gsl_matrix_alloc(cols, cols);

        alloc_suv(rows, cols);
        gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
        int ret = gsl_linalg_SV_decomp_mod( U, X, V, S, work );

        gsl_matrix_free(X);
        gsl_vector_free(work);

        return ret;
    }

    int GslSVD::SV_decomp_jacobi (gsl_matrix * A)
    {
        int rows = A->size1;
        int cols = A->size2;
        alloc_suv(rows, cols);
        gsl_matrix_memcpy (U, A); // 为了不破坏 A 中原始的数据,这里全都拷贝到 U 中
        int ret = gsl_linalg_SV_decomp_jacobi( U, V, S );
        return ret;
    }

    int GslSVD::SV_solve(const gsl_vector *b, gsl_vector *x)
    {
        if(U != NULL)
        {
            return gsl_linalg_SV_solve (U, V, S, b, x);
        }
        return -1;
    }

    GslSVD::~GslSVD()
    {
        if(S != NULL)
        {
            gsl_vector_free(S);
            gsl_matrix_free(V);
            gsl_matrix_free(U);
        }
    }

下面用这个类来计算一下刚才的问题:

    void test5()
    {
        double a_data[] = {1, 2,
                           2, 4};
        gsl_matrix_view A = gsl_matrix_view_array (a_data, 2, 2);
        GslSVD svd;
        svd.SV_decomp(&A.matrix);

        puts("S = ");
        gsl_vector_fprintf (stdout, svd.getVectorS(), "%f");

        puts("\nV = ");
        gsl_matrix_fprintf (stdout, svd.getMatrixV(), "%f");

        double b_data[] = {3, 6};
        gsl_vector_view b = gsl_vector_view_array (b_data, 2);
        gsl_vector * x = gsl_vector_alloc (2);
        svd.SV_solve(b, x);

        puts("\nx = ");
        gsl_vector_fprintf (stdout, x, "%f");
    }

结果如下:

S =
5.000000
0.000000

V =
-0.447214
-0.894427
-0.894427
0.447214

x =
-3.400000
3.200000

我们注意到 S 的第二个元素是 0,这表明 V 的对应列(第二列)是方程解的自由向量。所以我们方程的解可以写为:

x=(?3.43.2)+(?0.8944270.447214)?t

大家可以验证一下,这个解是正确的。

另外,我写的类中还提供了一个 trimVectorS(double abseps) 函数,利用这个函数,可以将 S 所有小于 abseps 的项直接替换为 0。之所以提供了这个函数,是因为由于计算误差等的影响,S 中一些本应该是 0 的项可能计算出的结果不是 0。用这个函数就可以解决这个问题。还有些矩阵,条件数很大,方程呈现病态,用这个函数也能解决些问题。

好了,就先写这么多。希望对大家有用。

以上是关于C语言用矩阵求解方程组的主要内容,如果未能解决你的问题,请参考以下文章

急!!如何用matlab语言编写一个用牛顿迭代法求解经过有限差分法处理过的非线性方程组

如何运用matlab矩阵运算求解线性方程组

用C语言编写一程序求解一元二次方程的根。

矩阵指数函数与常微分方程组求解

如何求解矩阵方程

如何用matlab求解线性方程组