现代计算机是如何计算圆周率的?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了现代计算机是如何计算圆周率的?相关的知识,希望对你有一定的参考价值。
用什么方法
可以用编程语言计算。以下是python语言
pi = 0.0
N = 100
for i in range(N):
pi += (1/pow(16,i) * ( 4/(8*i +1) -2/(8*i+4)-1/(8*i+5) -1/(8*i +6) ) )
print('圆周率为:.10f'.format(pi))
请把以上代码拷进python语言开发环境里运行,结果如下(下图是使用python开发环境Spyder运行上述代码的结果):圆周率为3.1415926536
扩展资料
电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。
这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。
参考资料:百度百科——圆周率
参考技术A可以用编程语言计算。以下是python语言
pi = 0.0
N = 100
for i in range(N):
pi += (1/pow(16,i) * ( 4/(8*i +1) -2/(8*i+4)-1/(8*i+5) -1/(8*i +6) ) )
print('圆周率为:.10f'.format(pi))
请把以上代码拷进python语言开发环境里运行,结果如下(下图是使用python开发环境Spyder运行上述代码的结果):圆周率为3.1415926536.
扩展资料
电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Integrator And Computer)在阿伯丁试验场启用了。
次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。
五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。
在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。
高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。这算法被称为布伦特-萨拉明(或萨拉明-布伦特)演算法,亦称高斯-勒让德演算法。
1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。
2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
参考资料来源:百度百科:圆周率
参考技术B可以用编程语言计算。以下是python语言:
pi = 0.0
N = 100
for i in range(N):
pi += (1/pow(16,i) * ( 4/(8*i +1) -2/(8*i+4)-1/(8*i+5) -1/(8*i +6) ) )
print('圆周率为:.10f'.format(pi))
请把以上代码拷进python语言开发环境里运行,结果如下(下图是使用python开发环境Spyder运行上述代码的结果):圆周率为3.1415926536
扩展资料
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。
参考资料:百度百科-圆周率
参考技术C可以用编程语言计算。以下是python语言
pi = 0.0
N = 100
for i in range(N):
pi += (1/pow(16,i) * ( 4/(8*i +1) -2/(8*i+4)-1/(8*i+5) -1/(8*i +6) ) )
print('圆周率为:.10f'.format(pi))
请把以上代码拷进python语言开发环境里运行,结果如下(下图是使用python开发环境Spyder运行上述代码的结果):圆周率为3.1415926536.
扩展资料
圆周率的研究过程:
1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。
2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
参考资料:百度百科-圆周率
可以用编程语言计算。以下是python语言计算圆周率:
pi = 0.0
N = 100
for i in range(N):
pi += (1/pow(16,i) * ( 4/(8*i +1) -2/(8*i+4)-1/(8*i+5) -1/(8*i +6) ) )
print('圆周率为:.10f'.format(pi))
结果如下:圆周率为3.1415926536
算术几何平均值和迭代法:
算术几何平均值(Arithmetic-Geometric Mean, AGM) M(a, b) 定义如下:
a0 = a, b0 = b
ak = (ak-1 + bk-1) / 2, bk = sqrt(ak-1 bk-1)
M(a, b) = limk->inf ak = limk->inf bk
然后,由椭圆积分的一系列理论可以推导出如下公式:
a0 = 1, b0 = 1 / sqrt(2)
1/PI = 1 - sumk=0~inf [2k (ak2 - bk2)] / 2M(a0, b0)2 (AGM)
扩展资料:
第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:
其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。
斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。
到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。以前的人计算圆周率,是要探究圆周率是否循环小数。
参考资料:百度百科——圆周率
以上是关于现代计算机是如何计算圆周率的?的主要内容,如果未能解决你的问题,请参考以下文章
历史上的今天:微软发布 IE9;黑莓创始人出生;圆周率计算创造新纪录