如何计算时间复杂度

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何计算时间复杂度相关的知识,希望对你有一定的参考价值。

如何计算时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大 O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;

以 上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.
for (i=1;i<n;i++)

y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②

解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.
a=0;
b=1; ①
for (i=1;i<=n;i++) ②

s=a+b;    ③
b=a;     ④
a=s;     ⑤

解: 语句1的频度:2,
语句2的频度: n,
语句3的频度: n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

2.4.
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++)

for(j=0;j<i;j++)

for(k=0;k<j;k++)
x=x+2;


解: 当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

我 们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法 如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间 。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要 求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
参考技术A

一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n)。

因此,算法的时间复杂度记做:T(n)=O(f(n))。

随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

时间复杂度的概念:

时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)

比如:一般总运算次数表达式类似于这样:

a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f

a ! =0时,时间复杂度就是O(2^n);

a=0,b<>0 =>O(n^3);

a,b=0,c<>0 =>O(n^2)依此类推

参考技术B 一个算法是解决某个问题的,比如n条数据排序问题,那么对于这个问题“n”就是它的问题规模
那么解决这个问题的算法的代价一定是n的函数,记为T(n)
为了比较不同算法之间的优劣,必须有一种方法将计算代价的函数进行变换,所以提出一种
概念叫做“复杂度”(好像是这么个意思,教材上的那个阴文单词背不出了)

如何计算以下伪代码的时间复杂度:

【中文标题】如何计算以下伪代码的时间复杂度:【英文标题】:How can I calculate the time complexity of the following pseudocode: 【发布时间】:2022-01-19 23:40:04 【问题描述】:

如何计算这个递归算法的时间复杂度,然后用它来计算主定理?

我知道对于主定理,我们将具有以下格式的函数: T(n)=aT(b/n)+f(n)

但是要计算运行时间,我只能用一般术语来思考,比如我们主要有常数,然后是 N/2,因为它会在每次迭代时拆分值。

所以我认为它会是 O(log(N)),也许吧?但是它的 T(n)=aT(b/n)+f(n) 是什么?我如何获得这个号码?

def Sum(A,left,right) 
      if left > right: 
          return 0 
      elif left == right: 
          return A[left] 

      mid = floor((left + right)/2) 
      lsum = Sum(A,left,mid) 
      rsum = Sum(A,mid+1,right) 
      
      return lsum + rsum

【问题讨论】:

如果Sumsum 功能相同,则复杂度为o(n) 其中n = len(A) 不是同一个函数。 很明显复杂度是 O(n) 【参考方案1】:

很明显,复杂度是O(n)。数组的每个元素只被访问一次。

在公式a = b = 2f(n) = O(1) 中。求解这些值,您将得到 O(n)

【讨论】:

以上是关于如何计算时间复杂度的主要内容,如果未能解决你的问题,请参考以下文章

如何计算C++的复杂度?

如何计算以下伪代码的时间复杂度:

如何计算时间复杂度

如何计算一个算法的时间复杂度

作业:我如何计算这个函数的时间复杂度?

时间复杂度(计算方法,如果计算,及其解释)