lio_sam发布rviz显现的话题
Posted COCO_PEAK_NOODLE
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了lio_sam发布rviz显现的话题相关的知识,希望对你有一定的参考价值。
1-解释:去畸变后的点云数据
pubExtractedCloud = nh.advertise<sensor_msgs::PointCloud2> ("lio_sam/deskew/cloud_deskewed", 1);
2-解释:提取的角点点云信息
pubCornerPoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_corner", 1);
3-解释:提取的平面点点云信息
pubSurfacePoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_surface", 1);
4-解释:激光位姿关键帧,这个话题名称叫KeyPoses多好
pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
5-解释:每一帧的激光角点和平面点的累积(所有帧)
pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
6-解释:激光里程计
pubOdomAftMappedROS = nh.advertise<nav_msgs::Odometry>("lio_sam/mapping/odometry", 1);
7-解释:关键帧组成的路线,和pubKeyPoses内容一致,只是表现形式不同(一个是点,一个是线)。
pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);
8-解释:靠近之前关键帧的角点和平面点的集合
pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
9-解释:发布闭环检测后(icp匹配)发布的点云
pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);
10-解释:计算激光里程计累计周围平面点的集合,怎么感觉是全部的平面点
pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
11-解释:所有帧匹配后的角点和平面点集合,这里作者写错了?
pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
12-解释:当前帧匹配后的激光矫正后的点云
pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);
13-解释:IMU测量的里程计
pubImuOdometry = nh.advertise<nav_msgs::Odometry> (odomTopic, 2000);
14:解释:IMU测量的路径
pubImuPath = nh.advertise<nav_msgs::Path> ("lio_sam/imu/path", 1);
以上是关于lio_sam发布rviz显现的话题的主要内容,如果未能解决你的问题,请参考以下文章