lio_sam之预积分计算
Posted COCO_PEAK_NOODLE
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了lio_sam之预积分计算相关的知识,希望对你有一定的参考价值。
简要概述:
就是把激光里程计融合IMU进行紧耦合解算IMU的BIas(零偏),同时修正激光里程计的误差,可以实现系统的稳定性和精度上的提高。
直接来代码,感觉gtsam已经做了很多工作,高度抽象了一种工具,类似pcl、opencv等。
/**
* 订阅激光里程计,来自mapOptimization
* 1、每隔100帧激光里程计,重置ISAM2优化器,添加里程计、速度、偏置先验因子,执行优化
* 2、计算前一帧激光里程计与当前帧激光里程计之间的imu预积分量,用前一帧状态施加预积分量得到当前帧初始状态估计,添加来自mapOptimization的当前帧位姿,进行因子图优化,更新当前帧状态
* 3、优化之后,执行重传播;优化更新了imu的偏置,用最新的偏置重新计算当前激光里程计时刻之后的imu预积分,这个预积分用于计算每时刻位姿
*/
void odometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
{
std::lock_guard<std::mutex> lock(mtx);
// 当前帧激光里程计时间戳
double currentCorrectionTime = ROS_TIME(odomMsg);
// 确保imu优化队列中有imu数据进行预积分
if (imuQueOpt.empty())
return;
// 当前帧激光位姿,来自scan-to-map匹配、因子图优化后的位姿
float p_x = odomMsg->pose.pose.position.x;
float p_y = odomMsg->pose.pose.position.y;
float p_z = odomMsg->pose.pose.position.z;
float r_x = odomMsg->pose.pose.orientation.x;
float r_y = odomMsg->pose.pose.orientation.y;
float r_z = odomMsg->pose.pose.orientation.z;
float r_w = odomMsg->pose.pose.orientation.w;
bool degenerate = (int)odomMsg->pose.covariance[0] == 1 ? true : false;
gtsam::Pose3 lidarPose = gtsam::Pose3(gtsam::Rot3::Quaternion(r_w, r_x, r_y, r_z), gtsam::Point3(p_x, p_y, p_z));
// 0. 系统初始化,第一帧
if (systemInitialized == false)
{
// 重置ISAM2优化器
resetOptimization();
// 从imu优化队列中删除当前帧激光里程计时刻之前的imu数据
while (!imuQueOpt.empty())
{
if (ROS_TIME(&imuQueOpt.front()) < currentCorrectionTime - delta_t)
{
lastImuT_opt = ROS_TIME(&imuQueOpt.front());
imuQueOpt.pop_front();
}
else
break;
}
// 添加里程计位姿先验因子
prevPose_ = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, priorPoseNoise);
graphFactors.add(priorPose);
// 添加速度先验因子
prevVel_ = gtsam::Vector3(0, 0, 0);
gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, priorVelNoise);
graphFactors.add(priorVel);
// 添加imu偏置先验因子
prevBias_ = gtsam::imuBias::ConstantBias();
gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, priorBiasNoise);
graphFactors.add(priorBias);
// 变量节点赋初值
graphValues.insert(X(0), prevPose_);
graphValues.insert(V(0), prevVel_);
graphValues.insert(B(0), prevBias_);
// 优化一次
optimizer.update(graphFactors, graphValues);
graphFactors.resize(0);
graphValues.clear();
// 重置优化之后的偏置
imuIntegratorImu_->resetIntegrationAndSetBias(prevBias_);
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
key = 1;
systemInitialized = true;
return;
}
// 每隔100帧激光里程计,重置ISAM2优化器,保证优化效率
if (key == 100)
{
// 前一帧的位姿、速度、偏置噪声模型
gtsam::noiseModel::Gaussian::shared_ptr updatedPoseNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(X(key-1)));
gtsam::noiseModel::Gaussian::shared_ptr updatedVelNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(V(key-1)));
gtsam::noiseModel::Gaussian::shared_ptr updatedBiasNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(B(key-1)));
// 重置ISAM2优化器
resetOptimization();
// 添加位姿先验因子,用前一帧的值初始化
gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, updatedPoseNoise);
graphFactors.add(priorPose);
// 添加速度先验因子,用前一帧的值初始化
gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, updatedVelNoise);
graphFactors.add(priorVel);
// 添加偏置先验因子,用前一帧的值初始化
gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, updatedBiasNoise);
graphFactors.add(priorBias);
// 变量节点赋初值,用前一帧的值初始化
graphValues.insert(X(0), prevPose_);
graphValues.insert(V(0), prevVel_);
graphValues.insert(B(0), prevBias_);
// 优化一次
optimizer.update(graphFactors, graphValues);
graphFactors.resize(0);
graphValues.clear();
key = 1;
}
// 1. 计算前一帧与当前帧之间的imu预积分量,用前一帧状态施加预积分量得到当前帧初始状态估计,添加来自mapOptimization的当前帧位姿,进行因子图优化,更新当前帧状态
while (!imuQueOpt.empty())
{
// 提取前一帧与当前帧之间的imu数据,计算预积分
sensor_msgs::Imu *thisImu = &imuQueOpt.front();
double imuTime = ROS_TIME(thisImu);
if (imuTime < currentCorrectionTime - delta_t)
{
// 两帧imu数据时间间隔
double dt = (lastImuT_opt < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_opt);
// imu预积分数据输入:加速度、角速度、dt
imuIntegratorOpt_->integrateMeasurement(
gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z), dt);
lastImuT_opt = imuTime;
// 从队列中删除已经处理的imu数据
imuQueOpt.pop_front();
}
else
break;
}
// 添加imu预积分因子
const gtsam::PreintegratedImuMeasurements& preint_imu = dynamic_cast<const gtsam::PreintegratedImuMeasurements&>(*imuIntegratorOpt_);
// 参数:前一帧位姿,前一帧速度,当前帧位姿,当前帧速度,前一帧偏置,预计分量
gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
graphFactors.add(imu_factor);
// 添加imu偏置因子,前一帧偏置,当前帧偏置,观测值,噪声协方差;deltaTij()是积分段的时间
graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),
gtsam::noiseModel::Diagonal::Sigmas(sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
// 添加位姿因子
gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, degenerate ? correctionNoise2 : correctionNoise);
graphFactors.add(pose_factor);
// 用前一帧的状态、偏置,施加imu预计分量,得到当前帧的状态
gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
// 变量节点赋初值
graphValues.insert(X(key), propState_.pose());
graphValues.insert(V(key), propState_.v());
graphValues.insert(B(key), prevBias_);
// 优化
optimizer.update(graphFactors, graphValues);
optimizer.update();
graphFactors.resize(0);
graphValues.clear();
// 优化结果
gtsam::Values result = optimizer.calculateEstimate();
// 更新当前帧位姿、速度
prevPose_ = result.at<gtsam::Pose3>(X(key));
prevVel_ = result.at<gtsam::Vector3>(V(key));
// 更新当前帧状态
prevState_ = gtsam::NavState(prevPose_, prevVel_);
// 更新当前帧imu偏置
prevBias_ = result.at<gtsam::imuBias::ConstantBias>(B(key));
// 重置预积分器,设置新的偏置,这样下一帧激光里程计进来的时候,预积分量就是两帧之间的增量
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
// imu因子图优化结果,速度或者偏置过大,认为失败
if (failureDetection(prevVel_, prevBias_))
{
// 重置参数
resetParams();
return;
}
// 2. 优化之后,执行重传播;优化更新了imu的偏置,用最新的偏置重新计算当前激光里程计时刻之后的imu预积分,这个预积分用于计算每时刻位姿
prevStateOdom = prevState_;
prevBiasOdom = prevBias_;
// 从imu队列中删除当前激光里程计时刻之前的imu数据
double lastImuQT = -1;
while (!imuQueImu.empty() && ROS_TIME(&imuQueImu.front()) < currentCorrectionTime - delta_t)
{
lastImuQT = ROS_TIME(&imuQueImu.front());
imuQueImu.pop_front();
}
// 对剩余的imu数据计算预积分
if (!imuQueImu.empty())
{
// 重置预积分器和最新的偏置
imuIntegratorImu_->resetIntegrationAndSetBias(prevBiasOdom);
// 计算预积分
for (int i = 0; i < (int)imuQueImu.size(); ++i)
{
sensor_msgs::Imu *thisImu = &imuQueImu[i];
double imuTime = ROS_TIME(thisImu);
double dt = (lastImuQT < 0) ? (1.0 / 500.0) :(imuTime - lastImuQT);
imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z), dt);
lastImuQT = imuTime;
}
}
++key;
doneFirstOpt = true;
}
以上是关于lio_sam之预积分计算的主要内容,如果未能解决你的问题,请参考以下文章