新版白话空间统计(14):空间关系概念化综述
Posted 虾神说D
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了新版白话空间统计(14):空间关系概念化综述相关的知识,希望对你有一定的参考价值。
CSDN的被爬虫专用声明:虾神原创,公众号\\知乎:虾神说D
转发、转载和爬虫,请主动保留此声明。
在前面的文章里面,我们反复强调,我们做任意空间分布的判定,都是由空间关系和属性关系共同作用所得到的最终结果。
所以,空间统计分析与传统的统计分析,最大的区别就在于空间统计学把样本数据中由空间信息所带来的空间关系直接整合到了算法之中,并且作为本门学科最主要的支柱。如果取消掉空间相关的特性,空间统计学与传统统计学就没有多大的区别了。
所以,我们从今天开始,准备用好几章的篇幅,好好给大家念叨一下空间关系概念化的内容。
首先解释一下“空间关系概念化”这个名词。
空间关系就是各个实体,在空间位置上面的相互关系,有如下三种定义:
第一:拓扑空间关系(实体之间是否存在包含、压盖、穿越、相交等),比如下面两个面要素的拓扑关系九宫格:
第二:顺序空间关系(实体之间的相对空间关系描述,比如东南西北上下左右前后里外等):
小贴士:
1、在伏羲先天八卦里面,是上南下北的,因为古代以坐北面南为尊(“不然,擅齐之强,得一士焉,宜可以南面而制秦,尚何取鸡鸣狗盗之力哉?”《读孟尝君传.王安石》)所以,自己这个位置是北,然后对面的位置是南。
2、八卦卦象速记口诀:
乾三连、坤六断;
离中虚、坎中满;
震仰盂、艮覆碗;
兑上缺、巽下断。
第三就是度量空间关系:度量空间关系可以进行定量描述,当然,可以进行定性描述,定量描述通常用数学语言来进行描述,而定性可以简单描述为(距离的)远、近,(时间的)长、短、(面积的)大、小等。(这个最好理解,A点距离B点,空间距离50公里;北京到西安,驾车约13个小时,如此这些,都是度量空间关系。)。
那么什么是空间关系的概念化呢?
这个名词是Esri提出来的,原文是:Conceptualization of Spatial Relationships ,你即可以直接翻译为概念化,也可以理解为:空间关系的形象化描述信息。通俗的说,就是在进行分析之前,需要对你的空间关系,进行一个定义。
比如,我们要在一个要素旁边,寻找所谓的“相邻”要素,怎么定义这个相邻呢?我们做出这样一个约定:两个要素的距离,在10公里以内,我们就认为他们是相邻要素——这种约定,就说所谓的概念化,把两个要素的空间关系,定义为一个概念:10公里范围。而且也是最简单最常见的一种空间关系概念——距离概念。
距离概念是空间关系概念化里面最简单的一个,也是最容易理解的一个,而在实际上应用中,我们还会有很多其他的空间关系概念,比如两个面要素如何判断是否相邻,一般都说,只要有一个公共边线或者公共点,就认为这两个面要素相邻,我这里所说的“公共点或者公共边”就说空间关系概念化里面的“共点共边即相邻”,也叫做“queen‘s case”,这个我们后面会专门讲到。
在实际的人文社科研究中,很多自然上的概念是无法直接拿来就用的,比如在两岸“三通”之前,想从福建厦门,到台湾,需要先中转到香港,然后才能到台湾,所以自然地理上的空间关系概念,就无法生效了:
所以,对于不同的分析,就需要选择定义好相应的空间关系概念。例如,我们要研究某一地区的通勤情况,使用行程时间或者行程成本这种方式作为空间关系的概念,是一个很好的选择。但是有一些研究,时间和空间变得不是那么重要,比如我们要研究城市间的相关程度,或者交互程度,例如拿手机通话数来说,北京与上海之间的通话数,可能要远远的高于北京与涿州(或者保定)之间的通话数,从这种概念上来说,北京与上海的相关程度要高得多。
常见的空间关系概念化包括了距离、时间、区域、邻近、邻接等,具体使用哪个,取决于要测量和分析的对象是什么。例如上面举出的几个例子,度量不同的研究对象,选择的概念就不同。
做空间分析,最有说服力的,就是客观性:地理空间是一个客观存在的空间,地理要素的类别、位置、距离等内容,都是客观存在于自然环境之中,不以人为意志所转移的,所以在分析的时候,我们更多的需要以空间分析为基准手段,或者加权校正手段的分析。
那么如何在空间分析软件和工具中使用空间关系概念,不同的空间关系概念又如何理解,能够带来什么样的不同呢?请听下回分解。
CSDN的被爬虫专用声明:虾神原创,公众号\\知乎:虾神说D
转发、转载和爬虫,请主动保留此声明。
以上是关于新版白话空间统计(14):空间关系概念化综述的主要内容,如果未能解决你的问题,请参考以下文章