推荐算法最前沿|KDD2020推荐系统论文一览
Posted 广告推荐AI算法
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了推荐算法最前沿|KDD2020推荐系统论文一览相关的知识,希望对你有一定的参考价值。
链接:https://zhuanlan.zhihu.com/p/161705748
KDD(https://www.kdd.org/kdd2020/)是推荐领域一个顶级的国际会议。本次接收的论文按照推荐系统应用场景可以大致划分为:CTR预估、TopN推荐、对话式推荐、序列推荐等。同时,GNN、强化学习、多任务学习、迁移学习、AutoML、元学习在推荐系统的落地应用也成为当下的主要研究点。此届会议有很大一部分来自工业界的论文,包括Google、Microsoft、Criteo、Spotify以及国内大厂阿里、百度、字节、华为、滴滴等。
CTR Prediction
1. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction 【华为诺亚】
简介:本文采用AutoML的搜索方法选择重要性高的二次特征交互项、去除干扰项,提升FM、DeepFM这类模型的准确率。
论文:arxiv.org/abs/2003.1123
2. Category-Specific CNN for Visual-aware CTR Prediction at JD.com 【京东】
论文:arxiv.org/abs/2006.1033
3. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】
论文:arxiv.org/abs/2007.0643
Graph-based Recommendation
1. A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks 【华为诺亚】
2. An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph 【Amazon】
论文:arxiv.org/abs/2007.0021
3. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems 【阿里】
简介:本文通过关联多个视角的图(item-item图、item-shop图、shop-shop图等)增强item表征,用于item召回。
论文:arxiv.org/abs/2005.1011
4. Handling Information Loss of Graph Neural Networks for Session-based Recommendation
5. Interactive Path Reasoning on Graph for Conversational Recommendation
论文:arxiv.org/abs/2007.0019
6. A Dual Heterogeneous Graph Attention Network to Improve Long-Tail Performance for Shop Search in E-Commerce 【阿里】
7. Gemini: A Novel and Universal Heterogeneous Graph Information Fusing Framework for Online Recommendations 【滴滴】
Conversational Recommendation
1. Evaluating Conversational Recommender Systems via User Simulation
论文:arxiv.org/abs/2006.0873
2. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion
论文:arxiv.org/abs/2007.0403
3. Interactive Path Reasoning on Graph for Conversational Recommendation
论文:arxiv.org/abs/2007.0019
CF and Top-N Recommendation
1. Dual Channel Hypergraph Collaborative Filtering 【百度】
笔记:blog.csdn.net/weixin_42
2. Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation 【华为诺亚】
3. Controllable Multi-Interest Framework for Recommendation 【阿里】
论文:arxiv.org/abs/2005.0934
4. Embedding-based Retrieval in Facebook Search 【Facebook】
论文:arxiv.org/abs/2006.1163
5. On Sampling Top-K Recommendation Evaluation
Embedding and Representation
1. Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems 【Facebook】
论文:arxiv.org/abs/1909.0210
2. PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest 【Pinterest】
论文:arxiv.org/abs/2007.0363
3. SimClusters: Community-Based Representations for Heterogeneous Recommendations at Twitter 【Twitter】
4. Time-Aware User Embeddings as a Service 【Yahoo】
论文:astro.temple.edu/~tuf28
Sequential Recommendation
1. Disentangled Self-Supervision in Sequential Recommenders 【阿里】
论文:http://pengcui.thumedialab.com/papers/Disen...
2. Handling Information Loss of Graph Neural Networks for Session-based Recommendation
3. Maximizing Cumulative User Engagement in Sequential Recommendation: An Online Optimization Perspective 【阿里】
论文:arxiv.org/pdf/2006.0452
RL for Recommendation
1. Jointly Learning to Recommend and Advertise 【字节跳动】
论文:arxiv.org/abs/2003.0009
2. BLOB: A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals 【Criteo】
3. Joint Policy-Value Learning for Recommendation 【Criteo】
论文:researchgate.net/public
Multi-Task Learning
1. Privileged Features Distillation at Taobao Recommendations 【阿里】
论文:arxiv.org/abs/1907.0517
Transfer Learning
1. Learning Transferrable Parameters for Long-tailed Sequential User Behavior Modeling 【Salesforce】
2. Semi-supervised Collaborative Filtering by Text-enhanced Domain Adaptation 【阿里】
论文:arxiv.org/abs/2007.0708
AutoML for Recommendation
1. Neural Input Search for Large Scale Recommendation Models 【Google】
论文:arxiv.org/abs/1907.0447
2. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】
论文:arxiv.org/abs/2007.0643
Federated Learning
1. FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems
Evaluation
1. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】
论文:arxiv.org/abs/2007.1298
2. Evaluating Conversational Recommender Systems via User Simulation
论文:arxiv.org/abs/2006.0873
3. 【Best Paper Award】On Sampled Metrics for Item Recommendation 【Google】
4. On Sampling Top-K Recommendation Evaluation
Debiasing
1. Debiasing Grid-based Product Search in E-commerce 【Etsy】
论文:public.asu.edu/~rguo12/
2. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】
论文:arxiv.org/abs/2007.1298
3. Attribute-based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies 【Google】
论文:research.google/pubs/pu
POI Recommendation
1. Geography-Aware Sequential Location Recommendation 【Microsoft】
论文:staff.ustc.edu.cn/~lian
Cold-Start Recommendation
1. MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
论文:arxiv.org/abs/2007.0318
2. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation
论文:https://ink.library.smu.edu.sg/cgi/...
Others
1. Improving Recommendation Quality in Google Drive 【Google】
论文:research.google/pubs/pu
2. Temporal-Contextual Recommendation in Real-Time 【Amazon】
论文:https://assets.amazon.science/96/71/...
以上是关于推荐算法最前沿|KDD2020推荐系统论文一览的主要内容,如果未能解决你的问题,请参考以下文章
KDD 2020关于深度推荐系统与CTR预估工业界必读的论文
KDD 2020 | 会话推荐系统新进展:基于互信息最大化的多知识图谱语义融合