KDD 2020关于深度推荐系统与CTR预估工业界必读的论文
Posted 浅梦的学习笔记
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了KDD 2020关于深度推荐系统与CTR预估工业界必读的论文相关的知识,希望对你有一定的参考价值。
导读:本文主要简要列举下Google、Tencent、Alibaba以及Huawei等各大公司工业界在KDD 2020上关于深度推荐系统与CTR预估相关的论文。
1. Multitask Mixture of Sequential Experts for User Activity Streams, Google
Authors: Yicheng Cheng: Google; Zhen Qin: Google Inc.; Zhe Zhao: Google; Zhe Chen: Google; Donald Metzler: Google; Jingzheng Qin: Google
论文:https://research.google/
pubs/pub49274/
2. Neural Input Search for Large Scale Recommendation Models, Google
Authors: Manas Joglekar: Not Available; Cong Li: Google; Mei Chen: Google; Taibai Xu: Google; Xiaoming Wang: Google; Jay Adams: Google; Pranav Khaitan: Google; Jiahui Liu: Google; Quoc Le: Google
论文:https://arxiv.org/abs/1907.04471
3. Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems, Google
Authors: Hao-Jun Shi: Northwestern University; Dheevatsa Mudigere: Facebook; Maxim Naumov: Facebook; Jiyan Yang: Facebook
论文:https://arxiv.org/abs/1909.02107
4. Embedding-based Retrieval in Facebook Search, Facebook
Authors: Jui-Ting Huang: Facebook; Ashish Sharma: Facebook; Shuying Sun: Facebook; Li Xia: Facebook; David Zhang: Facebook; Philip Pronin: Facebook; Janani Padmanabhan: Facebook; Giuseppe Ottaviano: Facebook; Linjun Yang: Facebook
论文:https://arxiv.org/abs/2006.11632
5. GrokNet: Unified Computer Vision Model Trunk and Embeddings For Commerce, Facebook
Authors: Sean Bell: Facebook; Yiqun Liu: Facebook; Sami Alsheikh: Facebook; Yina Tang: Facebook; Ed Pizzi: Facebook; Michael Henning: Facebook; Karun Singh: Facebook; Omkar Parkhi: Facebook; Fedor Borisyuk: Facebook
论文:http://t.cn/A6LrnQdy
6. TIES: Temporal Interaction Embeddings For Enhancing Social Media Integrity At Facebook, Facebook
Authors: Nima Noorshams: FACEBOOK; Saurabh Verma: FACEBOOK; Aude Hofleitner: FACEBOOK
论文:https://arxiv.org/abs/2002.07917
7. General-Purpose User Embeddings based on Mobile App Usage, Tencent
Authors: Junqi Zhang: Tencent; Bing Bai: Tencent; Ye Lin: Tencent; Jian Liang: Tencent; Kun Bai: Tencent; Fei Wang: Cornell University
论文:https://arxiv.org/abs/2005.13303
8. Understanding Negative Sampling in Graph Representation Learning, Alibaba
Authors: Zhen Yang: Department of Computer Science and Technology, Tsinghua University; Ming Ding: Department of Computer Science and Technology, Tsinghua University; Chang Zhou: DAMO Academy, Alibaba Group; Hongxia Yang: DAMO Academy, Alibaba Group; Jingren Zhou: DAMO Academy, Alibaba Group; Jie Tang: Department of Computer Science and Technology, Tsinghua University
论文:https://arxiv.org/abs/2005.09863
9. Controllable Multi-Interest Framework for Recommendation, Alibaba
Authors: Yukuo Cen: Tsinghua University; Jianwei Zhang: Alibaba Group; Xu Zou: Tsinghua University; Chang Zhou: Alibaba Group; Hongxia Yang: Alibaba Group; Jie Tang: Tsinghua University
论文:https://arxiv.org/abs/2005.09347
代码:https://github.com/
THUDM/ComiRec
10. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems, Alibaba
Authors: Menghan Wang: Alibaba Group; Yujie Lin: Alibaba; Guli Lin: Alibaba; Keping Yang: Alibaba; Xiaoming Wu: Hong Kong Polytechnic University
论文:https://arxiv.org/abs/2005.10110
代码:https://github.com/99731/M2GRL
11. Maximizing Cumulative User Engagement in Sequential Recommendation: An Online Optimization Perspective, Alibaba
Authors: Yifei Zhao: Alibaba; Yu-Hang Zhou: Alibaba; Mingdong Ou: Alibaba
论文:https://arxiv.org/abs/2006.04520
12. Privileged Features Distillation at Taobao Recommendations, Alibaba
Authors: Chen Xu: Alibaba Inc; Quan Li: Alibaba Inc; Junfeng Ge: Alibaba Group; Jinyang Gao: Alibaba; Xiaoyong Yang: Alibaba Group; Changhua Pei: Tsinghua University; Fei Sun: Alibaba Inc; Jian Wu: Alibaba Inc; Hanxiao Sun: Alibaba Group; Wenwu Ou: Alibaba Inc
论文:https://arxiv.org/abs/1907.05171
13. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction, Huawei
Authors: Bin Liu: ByteDance; Chenxu Zhu: Shanghai Jiao Tong University; Guilin Li: Noah s Ark Lab Huawei ; Weinan Zhang: Shanghai Jiao Tong University; Jincai Lai: Noah s Ark Lab Huawei ; Ruiming Tang: Noah s Ark Lab Huawei ; Xiuqiang He: Noah s Ark Lab Huawei ; Zhengguo Li: Noah s Ark Lab Huawei ; Yong Yu: Shanghai Jiao Tong University
论文:https://arxiv.org/abs/2003.11235
代码:https://github.com/
zhuchenxv/AutoFIS
14. On Sampled Metrics for Item Recommendation, Google
Authors: Walid Krichene: Google; Steffen Rendle: Google
15. Attribute-based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies, Google
Authors: Zhen Qin: Google; Suming J. Chen: University of California Los Angeles ; Donald Metzler: Google; Yongwoo Noh: Google; Jingzheng Qin: Google; Xuanhui Wang: Google
16. Grale: Designing Networks for Graph Learning, Google
Authors: Jonathan Halcrow: Google; Alexandru Mo_oi: Google; Sam Ruth: Google; Bryan Perozzi: Google
17. Improving Recommendation Quality in Google Drive, Google
Authors: Suming J. Chen: Google; Zhen Qin: Google; Zachary Wilson: Google; Brian Calaci: Google; Michael Rose: Google; Ryan Evans: Google; Sean Abraham: Google; Donald Metzler: Google; Sandeep Tata: Google; Mike Colagrosso: Google
18. Scaling Graph Neural Networks with Approximate PageRank, Google
Authors: Aleksandar Bojchevski: Technical University of Munich; Johannes Klicpera: Technical University of Munich; Bryan Perozzi: Google; Amol Kapoor: Google; Martin Blais: Google; Benedek Rozemberczki: The University of Edinburgh; Michal Lukasik: Google; Stephan Günnemann: Technical University of Munich
19. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction, Facebook
Authors: Qingquan Song: Texas A&M University; Dehua Cheng: Facebook Inc.; Eric Zhou: Facebook Inc.; Jiyan Yang: Facebook Inc.; Yuandong Tian: Facebook Inc.; Xia Hu: Texas A&M University
20. A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation, Tencent
Authors: Hong Zhang: Tencent; Lan Zhang: University of Science of Technology of China; Lan Xu: Tencent; Xiaoyang Ma: Tencent; Zhengtao Wu: University of Science of Technology of China; Cong Tang: University of Science of Technology of China; Wei Xu: Tencent; Yiguo Yang: Tencent
21. Meta-Learning for Query Conceptualization at Web Scale, Tencent
Authors: Fred X. Han: University of Alberta; Di Niu: University of Alberta; Haolan Chen: Tencent; Weidong Guo: Tencent; Shengli Yan: Tencent; Bowei Long: Tencent
22. Attention and Memory-Augmented Networks for Dual-View Sequential Learning, Alibaba
Authors: Yong He: Alibaba; Cheng Wang: Alibaba; Nan Li: Alibaba; Zhenyu Zeng: Alibaba
23. Disentangled Self-Supervision in Sequential Recommenders, Alibaba
Authors: Jianxin Ma: Alibaba Group; Tsinghua University; Chang Zhou: Alibaba Group; Hongxia Yang: Alibaba Group; Cui Peng: Tsinghua University; Xin Wang: Tsinghua University; Wenwu Zhu: Tsinghua University
24. Large-Scale Training System for 100-Million Classification at Alibaba, Alibaba
Authors: Liuyihan Song: Alibaba Group; Pan Pan: Alibaba Group; Kang Zhao: Alibaba Group; Hao Yang: Alibaba Group; Yiming Chen: Alibaba Group; Yingya Zhang: Alibaba Group; Yinghui Xu: Alibaba Group; Rong Jin: Alibaba Group
25. Multi-objective Optimization for Guaranteed Delivery in Video Service Platform, Alibaba
Authors: Hang Lei: Alibaba Group; Yin Zhao: Alibaba Group; Longjun Cai: Alibaba Group
26. A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks, Huawei
Authors: Jianing Sun: Huawei Technologies Canada; Wei Guo: Huawei Noah's Ark Lab; Dengcheng Zhang: Huawei Distributed and Parallel Software Lab; Yingxue Zhang: Huawei Technologies Canada; Florence Robert-Regol: McGill University; Yaochen Hu: Huawei Technologies Canada; Huifeng Guo: Huawei Noah's Ark Lab; Ruiming Tang: Huawei Noah's Ark Lab; Han Yuan: Huawei Distributed and Parallel Software Lab; Xiuqiang He: Huawei Noah's Ark Lab; Mark Coates: McGill University
27. Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation, Huawei
Authors: Chen Ma: McGill University; Liheng Ma: McGill University; Yingxue Zhang: Huawei Technologies Canada; Ruiming Tang: Huawei Noah's Ark Lab; Xue Liu: McGill University; Mark Coates: McGill University
更多WSDM 2020 accepted paper list请点击文末左下角原文链接查看。本文中涉及到的所有论文以及更多最前沿的推荐广告方面的论文分享请移步如下的GitHub项目进行学习交流、star以及fork,后续仓库会持续更新最新论文。
https://github.com/imsheridan/DeepRec
推荐阅读
码字很辛苦,有收获的话就请分享、点赞、在看三连吧 以上是关于KDD 2020关于深度推荐系统与CTR预估工业界必读的论文的主要内容,如果未能解决你的问题,请参考以下文章