图的存储结构:必须掌握的深度优先算法和广度优先算法

Posted 全球人工智能

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图的存储结构:必须掌握的深度优先算法和广度优先算法相关的知识,希望对你有一定的参考价值。


1.写在前面

图的存储结构有两种:一种是基于二维数组的邻接矩阵表示法。另一种是基于链表的的邻接表。

在邻接矩阵中,可以如下表示顶点和边连接关系:

    图的存储结构:必须掌握的深度优先算法和广度优先算法图的存储结构:必须掌握的深度优先算法和广度优先算法

说明:

将顶点对应为下标,根据横纵坐标将矩阵中的某一位置值设为1,表示两个顶点向联接。

图示表示的是无向图的邻接矩阵,从中我们可以发现它们的分布关于斜对角线对称

我们在下面将要讨论的是下图的两种遍历方法(基于矩阵的):


     图的存储结构:必须掌握的深度优先算法和广度优先算法图的存储结构:必须掌握的深度优先算法和广度优先算法

我们已经说明了我们要用到的是邻接矩阵表示法,那么我首先要来构造图:

矩阵图的数据结构如下表示:

图的存储结构:必须掌握的深度优先算法和广度优先算法


这样我们可以首先来创建上述图,为了方便,我们直接在代码中书写矩阵,而不用每次调试手动输入了

图的存储结构:必须掌握的深度优先算法和广度优先算法

这样我们就已经完成了准备工作,我们可以正式来学习我们的两种便利方式了。


2.深度优先遍历算法

分析深度优先遍历

从图的某个顶点出发,访问图中的所有顶点且使每个顶点仅被访问一次。这一过程叫做图的遍历。


深度优先搜索的思想:

①访问顶点v;
②依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
③若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

比如:

图的存储结构:必须掌握的深度优先算法和广度优先算法

在这里为了区分已经访问过的节点和没有访问过的节点,我们引入一个一维数组bool visited[MaxVnum]用来表示与下标对应的顶点是否被访问过,


流程:
☐ 首先输出 V1,标记V1的flag=true;
☐ 获得V1的邻接边 [V2 V3],取出V2,标记V2的flag=true;
☐ 获得V2的邻接边[V1 V4 V5],过滤掉已经flag的,取出V4,标记V4的flag=true;
☐ 获得V4的邻接边[V2 V8],过滤掉已经flag的,取出V8,标记V8的flag=true;
☐ 获得V8的邻接边[V4 V5],过滤掉已经flag的,取出V5,标记V5的flag=true;
☐ 此时发现V5的所有邻接边都已经被flag了,所以需要回溯。(左边黑色虚线,回溯到V1,回溯就是下层递归结束往回返)

图的存储结构:必须掌握的深度优先算法和广度优先算法
☐ 回溯到V1,在前面取出的是V2,现在取出V3,标记V3的flag=true;
☐ 获得V3的邻接边[V1 V6 V7],过滤掉已经flag的,取出V6,标记V6的flag=true;
☐ 获得V6的邻接边[V3 V7],过滤掉已经flag的,取出V7,标记V7的flag=true;
☐ 此时发现V7的所有邻接边都已经被flag了,所以需要回溯。(右边黑色虚线,回溯到V1,回溯就是下层递归结束往回返)


深度优先搜索的代码


图的存储结构:必须掌握的深度优先算法和广度优先算法


3.广度优先搜索算法

分析广度优先遍历

所谓广度,就是一层一层的,向下遍历,层层堵截,还是这幅图,我们如果要是广度优先遍历的话,我们的结果是V1 V2 V3 V4 V5 V6 V7 V8。

广度优先搜索的思想:

① 访问顶点vi ;

② 访问vi 的所有未被访问的邻接点w1 ,w2 , …wk ;

③ 依次从这些邻接点(在步骤②中访问的顶点)出发,访问它们的所有未被访问的邻接点; 依此类推,直到图中所有访问过的顶点的邻接点都被访问;

说明:

为实现

③,需要保存在步骤②中访问的顶点,而且访问这些顶点的邻接点的顺序为:先保存的顶点,其邻接点先被访问。 这里我们就想到了用标准模板库中的queue队列来实现这种先进现出的服务。


老规矩我们还是走一边流程:


说明: 

☐将V1加入队列,取出V1,并标记为true(即已经访问),将其邻接点加进入队列,则 <—[V2 V3] ☐取出V2,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[V3 V4 V5]

☐取出V3,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[V4 V5 V6 V7]

☐取出V4,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[V5 V6 V7 V8]

☐取出V5,并标记为true(即已经访问),因为其邻接点已经加入队列,则 <—[V6 V7 V8]

☐取出V6,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[V7 V8]

☐取出V7,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[V8]

☐取出V8,并标记为true(即已经访问),将其未访问过的邻接点加进入队列,则 <—[]


广度优先搜索的代码

两种算法的复杂度分析


深度优先

数组表示:查找所有顶点的所有邻接点所需时间为O(n2),n为顶点数,算法时间复杂度为O(n2)   


广度优先

数组表示:查找每个顶点的邻接点所需时间为O(n2),n为顶点数,算法的时间复杂度为O(n2)

本文转自博客园 阅读原文点击原文链接


全球人工智能近期经典文章推荐









以上是关于图的存储结构:必须掌握的深度优先算法和广度优先算法的主要内容,如果未能解决你的问题,请参考以下文章

图的遍历广度优先遍历(DFS)深度优先遍历(BFS)及其应用

深度优先算法和广度优先算法

深度优先算法和广度优先算法

深度优先算法和广度优先算法

深度优先算法和广度优先算法

用邻接表表示图的广度优先搜索时的存储结构,通常采用()结构来实现算法