动态规划第八篇:认识完全背包问题
Posted Java架构师(公众号:毛奇志)
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划第八篇:认识完全背包问题相关的知识,希望对你有一定的参考价值。
完全背包定义
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。
在下面的讲解中,我依然举这个例子:
背包最大重量为4。
物品为:
每件商品都有无限个!
问背包能背的物品最大价值是多少?
问题1:背包和完全背包唯一不同就是体现在遍历顺序上
首先在回顾一下01背包的核心代码
// 01背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 完全背包:先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j < bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
问题2:为什么遍历物品在外层循环,遍历背包容量在内层循环?
这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?
难道就不能遍历背包容量在外层,遍历物品在内层?
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一位dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序同样无所谓!因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。只要保证下标j之前的dp[j]都是经过计算的就可以了。
先遍历被背包在遍历物品,代码如下:
// 完全背包:先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}
代码模板:完全背包问题
完整的C++测试代码如下:
// 先遍历物品,在遍历背包
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
// 先遍历背包,再遍历物品
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
以上是关于动态规划第八篇:认识完全背包问题的主要内容,如果未能解决你的问题,请参考以下文章