数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )

Posted 韩曙亮

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )相关的知识,希望对你有一定的参考价值。

文章目录





一、求 a^nu(n) 傅里叶变换



a n u ( n ) a^nu(n) anu(n) 的傅里叶变换 S F T [ a n u ( n ) ] SFT[a^nu(n)] SFT[anu(n)] ?

其中 ∣ a ∣ ≤ 1 |a| \\leq 1 a1 ;


1、傅里叶变换与反变换公式介绍


傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和 " , 如下公式

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^j\\omega) = \\sum_n=-\\infty^+\\infty x(n) e^-j \\omega n X(ejω)=n=+x(n)ejωn


傅里叶反变换 : 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ;

x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω k d ω x(n) = \\cfrac12\\pi \\int_-\\pi ^\\pi X( e^j \\omega )e^j \\omega k d \\omega x(n)=2π1ππX(ejω)ejωkdω


2、求 sinωn 的傅里叶变换推导过程


a n u ( n ) a^nu(n) anu(n)

序列 , 直接带入到

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^j\\omega) = \\sum_n=-\\infty^+\\infty x(n) e^-j \\omega n X(ejω)=n=+x(n)ejωn

傅里叶变换公式中 , 可得到 :

X ( e j ω ) = ∑ n = 0 + ∞ a n e − j ω n X(e^j\\omega) = \\sum_n=0^+\\infty a^n e^-j \\omega n X(ejω)=n=0+anejωn

根据 " 等比级数求和 " 公式 , 可以得到

X ( e j ω ) = 1 1 − a e − j ω X(e^j\\omega) = \\cfrac11-ae^-j \\omega X(ejω)=1aejω1

以上是关于数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )的主要内容,如果未能解决你的问题,请参考以下文章

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | e^jωn 的傅里叶变换 )

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | e^jωn 的傅里叶变换 )

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 单位脉冲序列 δ(n) 傅里叶变换 )

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )

数字信号处理序列傅里叶变换 ( 基本序列的傅里叶变换 | 单位脉冲序列傅里叶变换 )