试问Floyd算法可否处理有向图?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了试问Floyd算法可否处理有向图?相关的知识,希望对你有一定的参考价值。

对着这个列表做一些题,分析每道题的特点和出错点,总结算法和自己的模板。
做完初期就差不多可以应付校赛了。
然后再是中期。。。

OJ上的一些水题(可用来练手和增加自信)
(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)

初期:

一.基本算法:
(1)枚举. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
1.E[j]=opt (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt (最长公共子序列)

(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)

(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)

中级:

一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(1)差分约束系统的建立和求解. (poj1201,poj2983)
(2)最小费用最大流(poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
(3)记忆化搜索(poj3373,poj1691)

五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.

(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几何学.
(1)坐标离散化.
(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多边形的内核(半平面交)(poj3130,poj3335)
(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429
)

高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)

(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法

(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移

目的). (poj2823)
(4)左偏树(可合并堆).
(5)后缀树(非常有用的数据结构,也是赛区考题的热点).
(poj3415,poj3294)
四.搜索
(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储
状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大
、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
(1)需要用数据结构优化的动态规划.
(poj2754,poj3378,poj3017)
(2)四边形不等式理论.
(3)较难的状态DP(poj3133)
六.数学
(1)组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕论.
1.极大极小过程(poj3317,poj1085)
2.Nim问题.
七.计算几何学.
(1)半平面求交(poj3384,poj2540)
(2)可视图的建立(poj2966)
(3)点集最小圆覆盖.
(4)对踵点(poj2079)
八.综合题.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
参考技术A 当然可以了
只要不是带负环(这样的话就没有正确答案了) 都可以处理的
稠密图上效率比较好本回答被提问者采纳

算法复习:最短路Dijkstra - Ford - Floyd

Dijkstra算法适用范围是单源最短路,有向图或者无向图,不能处理负权值

Floyd算法适用多源最短路,有向图或者无向图,可以处理负权值但是不能处理负权回路

Ford 算法多源最短路,可以处理负权值,能检测负权回路

 

Leetcode 743. 网络延迟时间

先用Dijkstra算法解,输入是vector要转存一下,另外找的是最后一个传播到的节点所用时间

技术图片
#define max 999999
#define CLR(donser,value) memset(donser,value,sizeof(donser))
class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) 
    {
        int dis[N+1],map[N+1][N+1];
        CLR(dis,max);
        bool visit[N+1];
        CLR (visit,false);
        for(int i=1;i<=N;i++)//先初始化map
            for(int j=1;j<=N;j++)
                map[i][j]=max;
        for(int i=0;i<times.size();i++)//把边转存到map
            map[times[i][0]][times[i][1]]=times[i][2];
        for(int i=1;i<=N;i++)//和起点直接相连的边
        {
            if(i==K)
                dis[i]=0;
            else
                dis[i]=map[K][i];
        }
        visit[K]=true;//起点做标记
        for(int i=1;i<=N;i++)//循环N次
        {
            int min=max,k;
            for(int j=1;j<=N;j++)//找未加入visit的点所连最小边
            {
                if(!visit[j]&&min>dis[j])
                    min=dis[k=j];//k记录取到最小值时的下标
            }
            if(min==max)//不存在没加入的边了
                break;
            visit[k]=true;
            for(int j=1;j<=N;j++)//给没有加入的边更新权值
            {
                if(!visit[j]&&dis[j]>dis[k]+map[k][j])//新加入了K,把与K相连的边加入
                    dis[j]=dis[k]+map[k][j];
            }
        }
        int find=0;
        for(int i=1;i<=N;i++)
            if(dis[i]>find)
                find=dis[i];
        if(find==max)
            return -1;
        else
            return find;
    }
};
leedcode 743

另外,Dijkstra算法模板:

#define N 101
#define max 999999
#define CLR(arr,what) memset(arr,what,sizeof(arr))
int nodenum,edgenum;
int map[N][N],dis[N];
bool visit[N];
int Dijkstra(int src,int des)//输入开始点和结束点
{
    int temp,k;
    CLR(visit,false);
    for(int i=0;i<=nodenum;i++)//先把和开始点直接相连的边找出来
    {
        if(i==src)
            dis[i]=0;//dis[i]存连入i的边,起始点赋0
        else
            dis[i]=map[src][i];
    }
    visit[src]=true;//起始点做标记
    dis[src]=0;
    for(int i=1;i<=nodenum;i++)//做i次循环
    {
        temp=max;
        for(int j=1;j<=nodenum;j++)//寻找没有加入visit的节点中权值最小的
        {
            if(!visit[j]&&temp>dis[j])
                temp=dis[k=j];
        }
        if(temp==max)//不存在没有加入的边时结束
            break;
        visit[k]=true;//访问标记
        for(int j=1;j<=nodenum;j++)//加入k点以后更新和k相连的边
        {
            if(!visit[j]&&dis[j]>dis[k]+map[k][j])
                dis[j]=dis[k]+map[k][j];
        }
    }
    return dis[des];
}

 

以上是关于试问Floyd算法可否处理有向图?的主要内容,如果未能解决你的问题,请参考以下文章

Floyd算法

floyd算法 是动态规划的思想吗

Floyd算法解决多源最短路径问题

最短路径的floyd算法的时间复杂度

44-Floyd 算法

多源最短路径 – Floyd-Warshall Algorithm