构建基因文库的目的和意义?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了构建基因文库的目的和意义?相关的知识,希望对你有一定的参考价值。

基因文库技术分离目的基因 所谓文库(1ibrary)是指一种全体的集合。基因文库(gene library)则是指某一生物类型全部基因的集合。这种集合是以重组体形式出现。某生物DNA片段群体与载体分子重组,重组后转化宿主细胞,转化细胞在选择培养基上生长出的单个菌落(或噬菌斑)(或成活细胞)即为一个DNA片段的克隆。全部DNA片段克隆的集合体即为该生物的基因文库。 构建基因文库的意义不只是使生物的遗传信息以稳定的重组体形式贮存起来,更重要的是它是分离克隆目的基因的主要途径。对于复杂的染色体DNA分子来说,单个基因所占比例十分微小,要想从庞大的基因组中将其分离出来,一般需要先进行扩增,所以需要构建基因文库。在很多情况下目的基因的分离都离不开基因文库。此外基因文库也是复杂基因组作图的重要依据。基因文库构建包括以下基本程序: ① DNA提取及片段化,或是cDNA的合成。 ② 载体的选择及制备。 ③ DNA片段或cDNA与载体连接。 ④ 重组体转化宿主细胞。 ⑤ 转化细胞的筛选。当获得了含重组体的宿主细胞时,即完成了基因的克隆。基因的克隆只是分离基因的基础,基因克隆后还要对克隆的基因进行分离,即利用各种手段把目的基因从文库中分离出来。分离出目的基因还必须对其进行必要的检测与分析:如进行序列测定,体外转录及翻译、功能互补实验等。通过这些实验确定出基因的结构及功能。到这时才能算分离到了目的基因。所以,基因的克隆、克隆基因的分离、分离基因的鉴定是利用基因文库技术分离目的基因的主要内容。一、基因文库的类别 1. 基因组文库与cDNA文库 根据基因类型,基因文库可分为基因组文库及cDNA文库。基因组文库是指将某生物的全部基因组DNA切割成一定长度的DNA片段克隆到某种载体上而形成的集合。 cDNA文库是指某生物某一发育时期所转录的mRNA经反转录形成的cDNA片段与某种载体连接而形成的克隆的集合。 基因组文库根据DNA来源又有核基因组文库、叶绿体基因组文库及线粒体基因组文库。 基因组文库与cDNA文库的区别在于cDNA文库是有时效性的。文库构建时的信息供体是某一时空条件下的细胞总mRNA,它是在转录水平上反映该生物在某一特定发育时期,某一特定组织(或器官)在某种环境条件下的基因表达情况,并不能包括该生物有机体的全部基因。在某种意义上讲它可以表现基因组的功能信息。再者,cDNA文库只反映mRNA的分子结构。cDNA中不含有真核基因的间隔序列及调控区,确切说cDNA并不是真正意义上的基因。基因组文库构建时遗传信息供体是基因组DNA,因而无发育时期及组织器官特异性,在一个完全的基因组文库中包含着基因组DNA上的所有编码区及非编码区序列的克隆。生物有机体的每一个基因在文库中都有其克隆,该克隆的基因片段里包括着间隔序列,所以基因组文库可真实地显示基因组的全部结构信息。目前这两类基因文库在基因工程中都得到有效应用。选择哪一种,主要是根据实验目的。在分离RNA病毒基因,研究功能蛋白序列,分离特定发育阶段或特定组织特异表达的基因时应构建cDNA文库。在研究mRNA分子中不存在的序列及基因组作图时必须构建核基因组文库。 2. 克隆文库及表达文库从基因文库的功能上看可分为克隆文库及表达文库。克隆文库由克隆载体构建。载体中具复制子、多克隆位点及选择标记,可通过细菌培养使克隆片断大量增殖。表达文库是用表达载体构建。载体中除上述元件外,还具有控制基因表达的序列(如启动子、SD序列、ATG、终止子等),可在宿主细胞中表达出克隆片段的编码产物。表达载体又有融合蛋白表达载体及天然蛋白表达载体之分。 从克隆文库中分离目的克隆时主要利用核酸探针,可以是根据蛋白质序列合成的寡核苷酸探针,也可以是同种或同属生物的同源序列探针。从表达文库中分离目的克隆时,因克隆片段的表达产物蛋白质具有抗原性及生物活性,所以除核酸探针外,还可以利用免疫学探针及生物功能进行筛选。表达文库适合于那些不知道蛋白质的氨基酸序列、不能用核酸类探针筛选的目的基因的分离。 3.不同载体的基因文库 目前用于构建基因文库的载体主要有质粒、噬菌体、黏粒及人工染色体四大类。每类中又有许多不同的载体。不同的载体适于构建不同的基因文库。(1). 质粒文库 质粒是最早用于基因克隆的载体。现已有各种适用于不同工作的如克隆、表达、测序等专用商品质粒。但在构建基因文库上,由于质粒相对较小并只能容纳比自身更小的片段,因此它不能用于构建核基因组文库,通常只用来构建短序列的克隆文库。例如叶绿体DNA分子较小,可以用质粒构建叶绿体DNA文库。质粒载体可用于生物cDNA文库构建。但只适合于高丰度的mRNA。(2). 噬菌体文库 目前用于基因克隆的噬菌体载体及其衍生载体很多,如单链的M13噬菌体载体、λ噬菌体载体、P1噬菌体载体、噬菌粒(phagemid或phasmid)等。其中使用最多的是入噬菌体。 λ-DNA为双链结构,长49kb。线性分子两端各有一条12个核苷酸的黏性末端称cos位点。分子中有约15kb可去掉的非必要基因区,又称“填充区”, “填充区”两侧的序列含有其增殖所必需的全部基因,称为左、右臂。“填充区”可被外源DNA取代,构成重组体,这是它成为克隆载体的结构基础。由于噬菌体头部包装容量的限制,重组λ-DNA分子大小只能在39—52kb之间。(3). 黏粒文库 黏粒(cosmid)也称柯斯质粒,是人工构建的由λ噬菌体的COS序列、质粒的复制子序列及抗生素抗性基因序列组合而成的一类特殊的质粒载体。COS序列是DNA包装进噬菌体颗粒所必须的。复制子通常是使用ColEl或pMBl的复制起始位点。黏粒具有λ噬菌体的某些性质,在克隆了大小合适的外源DNA片段并且在体外被包装成噬菌体颗粒后,能高效转导对入噬菌体敏感的大肠杆菌宿主细胞。在宿主细胞内按λ噬菌体方式环化,但不能通过溶菌周期,无法形成子代噬菌体颗粒(因分子中不具入噬菌体全部必要基因)。它也具有质粒载体的主要性质,在宿主细胞内可以像其他质粒一样复制,并与松弛型质粒相同,适量的氯霉素可促进扩增。因具抗生素基因,可以通过抗生素抗性筛选重组子。黏粒载体在构建时也加上了设在插入失活基因内的多克隆位点。黏粒载体的分子较小(2.8—24kb),但克隆容量很高,对外源DNA长度的要求是30~45 kb,上限几乎是入噬菌体载体容量(23 kb)的2倍,所以黏粒载体在核基因组文库构建上具有相当的优势,可克隆包括3,和5’调控区在内的完整的植物基因。(4).人工染色体文库 人工染色体载体是利用真核生物染色体或原核生物基因组的功能元件构建的能克隆大于50kbDNA片段的人工载体。其中有的载体既可用于克隆,又能直接转化,是进行基因功能研究的良好载体。近年来陆续发展起来的人工染色体文库有YAC库、BAC库、BIBAC库、PAC库及TAC库。二、核基因组文库构建核基因组文库构建主要使用λ噬菌体置换型载体或黏粒载体。 1. 随机文库克隆数目随机文库指代表基因组各部分DNA的摩尔数相等。对于随机文库: N = ln(1-P) ; ln(1-x/y) N:克隆数目 P:设定的概率值(如:0.99,表示在片段随机分布时,从文库中找到任一序列的概率不低于0.99) x:插入片段平均大小(15~20kb) y:基因组的大小(以kb计) 如果插入片段平均大小为20kb,某基因组大小为4X108bp,P = 0.99时,根据上式N = 1X105。含1XlO5个克隆的基因文库相当覆盖了5倍的基因组,在片段随机分布时,从文库中找到任一序列的概率不低于0.99。随机片段可通过机械切割或限制酶消化产生。机械切割法可获得较均一的随机片段,但片段不能直接用于克隆,需经末端修饰、甲基化,连上接头后再用限制性内切酶消化产生黏性末端。用限制酶消化的方法虽然可直接产生黏性末端,但片段的随机性较差,所以采用后种方法时,文库的克隆数目应大于计算值。三、利用PCR技术构建c DNA文库 cDNA文库构建的起始信息物质是mRNA。因此构建cDNA文库首先要考虑的问题是mRNA的含量及质量。生物细胞中mRNA含量较低。通常cDNA文库构建需要ug级的mRNA。对于低丰度的mRNA(<0.5%),要通过富集或增大克隆数目来保证构建的文库中能够含有它们的克隆

参考资料:http://old.blog.edu.cn/user4/242153/archives/2008/2133674.shtml

参考技术A

含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因;

如果这个文库包含了某种生物的所有基因,那么,这种基因文库叫做基因组文库。如果这个文库只包含了某种生物的一部分基因,这种基因文库叫做部分基因文库,例如cDNA文库,首先得到mRNA,再反转录得cDNA,形成文库。cDNA文库与基因组文库的区别在于cDNA文库在mRNA拼接过程中已经除去了内含子等成分,便于DNA重组时直接使用。

应用

建立和使用基因文库是分离基因,特别是分离高等真核生物基因的有效手段。如果一个哺乳动物的基因组是 3×109碱基对,直接从细胞中提取并分离出某一特定基因的DNA片段在技术上是很困难的。但是在基因文库中,不同的 DNA片段都分别在不同的克隆中扩增了,只要有该基因的探针存在,则从许多克隆中筛选一个所需的克隆是一项比较简单的工作。

此外基因文库中被克隆的DNA都是基因组中各种随机的顺序片段,某些 DNA片段还包括基因外部的邻近的甚至互相跨叠的序列,所以基因文库特别有利于研究天然状态下基因的顺序组织。例如曾从人的基因文库中分离得到含有血红蛋白β链基因的克隆,从中取得该基因的DNA并进行分析,发现人的δ和β链基因是连锁的,二者之间相隔几千个碱基对,而且在它们内部都有两个内含子。

参考技术B 基因文库包括基因组文库和部分基因文库。将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。如果这个文库包含了某种生物的所有基因,那么,这种基因文库叫做基因组文库。如果这个文库只包含了某种生物的一部分基因,这种基因文库叫做部分基因文库,例如cDNA文库,首先得到mRNA,再反转录得cDNA,形成文库。cDNA文库与基因组文库的区别在于cDNA文库在mRNA拼接过程中已经除去了内含子等成分,便于DNA重组时直接使用。

建立和使用基因文库是分离基因,特别是分离高等真核生物基因的有效手段。如果一个哺乳动物的基因组是 3×109碱基对,直接从细胞中提取并分离出某一特定基因的DNA片段在技术上是很困难的。但是在基因文库中,不同的 DNA片段都分别在不同的克隆中扩增了,只要有该基因的探针存在,则从许多克隆中筛选一个所需的克隆是一项比较简单的工作。此外基因文库中被克隆的DNA都是基因组中各种随机的顺序片段,某些 DNA片段还包括基因外部的邻近的甚至互相跨叠的序列,所以基因文库特别有利于研究天然状态下基因的顺序组织。例如曾从人的基因文库中分离得到含有血红蛋白β链基因的克隆,从中取得该基因的DNA并进行分析,发现人的δ和β链基因是连锁的,二者之间相隔几千个碱基对,而且在它们内部都有两个内含子。
基因文库还可以应用在个体发育的研究中。例如从芽孢杆菌的正在形成芽孢的菌体中分离mRNA,并用同位素标记做成探针,用这些探针可以从芽孢杆菌的基因文库中分离出只在芽孢形成过程中活动的基因,有助于对发育过程中基因调控进行研究。
基因文库也可以应用在高等生物,例如人的基因定位工作中。基因文库在生产实际中也是取得所需要的基因的一种重要方法。

中国建立了人口健康基因检测科学社会工程,力使我国从整体上提高我国人口的健康和保健水平。
工程目标:第一期认证、提供可用于健康检测的不少于50种疾病的易感基因位点并逐年增加:建立1000个授权检测站;达到年检测3000万人次的检测服务能力;建立“中国复杂人群基因-环境数据库”;实现包括检测服务于产品销售总收入超过100亿元的健康产业规模;为社会提供数以万计的就业机会。
在经济、社会和科技效益方面有良好的成效。
参考技术C 基因组文库的意义是从中找到自己想要的B-A-C克隆,进行目的基因定位,测序

基因克隆

        基因克隆(gene cloning)或分子克隆,又称为重组DNA技术,是应用酶学方法,在体外将不同来源的DNA分子通过酶切、连接等操作重新组装成杂合分子,并使之在适当的宿主细胞中进行扩增,形成大量的子代DNA分子的过程。例如,要获得人类基因组中的某个基因,我们就需要借助基因克隆技术,进行目的基因的分离、克隆和扩增。因此,接下来,我就从基因克隆工具和具体的实验流程两方面进行介绍。

( 1 )限制性内切酶

        首先介绍的是限制性核酸内切酶,它是细菌的“限制-修饰系统”防御机制的重要一员。限制修饰系统(Restriction-Modification System, R-M system ),即限制酶和甲基化酶系统(图1) [1]。研究者将能识别并切断外来DNA分子的某些部位,使外来DNA失去活性,限制外来噬菌体的繁殖的酶称为 限制性核酸内切酶 (Restriction endonuclease,RE,简称限制性内切酶或限制酶)。而宿主细菌的DNA通过甲基化酶的甲基化后,DNA的酶切位点被保护起来,不会被限制酶切割。

        根据限制性内切酶的结构,识别位点,切割位点等特性可以将RE分成四类(表1)[2],基因克隆中常用的是II型限制性内切酶。不过像IV型内切酶这种可以识别修饰化DNA,可以用于表观遗传学的研究。

        II型限制性内切酶是目前发现的最多的一类内切酶,根据其识别位点与切割位点的特性又可以分成不同的亚型[3],例如我们常见的识别回文序列的内切酶, Eco R I,属于Type IIP类型,这种酶的切割位点在识别位点内部;而像现在在CRISPR/Cas9相关基因克隆中用到的 Bpi I等酶,则属于Type IIS型,它的切割位点离识别位点有几个到几十个碱基的距离。

        既然是限制性内切酶,那么酶切DNA后就会留下不同的末端类型,这其中就包括粘性末端和平末端(图3)。所谓的粘性末端,就是酶切后有5’端或者3’端有突出碱基的末端类型,因此又分为5’ Overhang end,例如 Hin d III,和3’ Overhang end, 例如 Pst I两种。那些酶切后没有突出碱基的就属于平末端类型, 例如 Eco R V。

        DNA碱基之间靠5’, 3’ 磷酸二酯键连接,限制性内切酶切割DNA后,出现的是5’-P 和3’-OH(图4)。

        另外,根据限制性内切酶的功能,其又有同裂酶、异裂酶、同尾酶、可变酶和修饰敏感内切酶等类型(图5)。其中,同裂酶(isoschizomer),又称异源同工酶,即从不同原核生物中分离出来的不同的Ⅱ型酶,有相同的识别特点和切割位点,例如 Age I和 Bsh T I。异裂酶则是指可以识别相同的核苷酸序列,但会在不同的位点切割 DNA,例如 Sma I和 Xma I。同尾酶(isocaudarmer)指不同来源的酶其识别和切割序列有一定的相关性,作用后能产生相同的粘性末端,例如 Age I和 Xma I,这一类的酶酶切后的产物可以进行连接,在基因克隆中有着重要的用途。可变酶则指所识别DNA序列中的一个或几个碱基是可变的,并且识别序列往往超过6个碱基对,例如 Bst E II识别序列为:GGTNACC,其中N为一可变碱基,可以是A/T/C/G四种中的任何一个;而 Bst N I 的识别序列为CCWGG,其中的W则表示A或者T。修饰敏感内切酶是对DNA修饰(例如甲基化修饰)敏感的限制性内切酶,例如 Bcl I对甲基化的识别位点不能切割,但无甲基化的则可以进行切割; Dpn I则刚好相反,有甲基化才能切割。

        限制性内切酶有那么多种,到底选择那种进行呢?

        首先,我们需要进行酶切位点分析,可以使用在线( Sequence Manipulation Suite 和 analyze-sequence, Addgene )或者本地版(SnapGene)的分析工具进行序列分析。然后结合同裂酶、异裂酶、同尾酶、可变酶特性进行RE选择,并且同时要考虑所选限制性内切酶对修饰敏感性。另外,根据试剂使用中使用的酶的数量,我们将酶切反应可以分为单酶切、双酶切和分步酶切。 单酶切 :同一个体系进行一种酶切反应; 双酶切 :同一个体系进行两种酶的酶切反应(针对反应条件一致的限制性内切酶); 分步酶切 :样品进行完第一个酶切反应后进行纯化,再进行第二个酶切反应(针对反应条件不一样的限制性内切酶)。明确了以上信息后,我们就可以进行酶切反应了。一个酶切反应涉及样品类型,缓冲液,酶量以及反应温度和反应时间等。这些都可以参考限制性内切酶的产品使用说明进行操作。

( 2 ) DNA 连接酶

        限制性内切酶负责将DNA切开,DNA连接酶则是用来重新连接DNA的工具。DNA连接酶是一类催化双链DNA中相邻碱基的5’磷酸和3’羟基间磷酸二酯键形成的酶(图6)。因为是双链,所以一般要求连接位点不能出现碱基错配。不过实际应用中,DNA连接酶也会将有少量错配的DNA进行连接。DNA连接酶主要有两种:T4 DNA连接酶(平末端和粘性末端均可连接),大肠杆菌DNA连接酶(只能连接粘性末端)。

( 3 ) DNA 聚合酶

之前我们介绍过PCR聚合酶链式反应,其中使用的就是DNA聚合酶。实际上,DNA聚合酶长具备三种酶活性(图7):用于新链DNA合成的DNA聚合酶活性,用于错误参入碱基校正的3’-5’核酸外切酶活性,还有5’-3’ 核酸外切酶活性,在DNA复制中用于去除RNA 引物。借助这一活性,可以进行Nick translation,用于标记核苷酸参入等。但并不是每一种DNA聚合酶都这三种酶活性,NEB官网提供了一系列DNA聚合酶及其具备的功能活性( DNA Polymerase Selection Chart-NEB )。

        根据所使用的DNA聚合酶类型不同,PCR产物的末端有3’-A粘性末端和平末端两种类型。其中Taq DNA polymerase因为缺乏3’-5’ exonuclease活性,其PCR的保真度低,且PCR产物的3’端多一个粘性末端A;而 高保真DNA polymerase保留3’-5’ exonuclease活性,有很高的校正活性,其PCR产物为平末端。

( 4 )无缝克隆技术

        除了上面介绍的用于传统基因克隆中国的相关工具外,研究者开发了新型的基于插入片段和线性化载体的末端进行同源重组的基因克隆技术,即无缝克隆技术(Seamless Cloning),主要包括Gibson Assembly[4]和Getway Clone两种。这里我们重点介绍其中的Gibson Assembly。

        Gibson Assembly技术包含了DNA 5' 外切酶(5' Exonuclease)、DNA聚合酶(DNA Polymerase)和DNA连接酶(DNA Ligase)活性的重组酶(assembly enzyme),通过同源重组的方法可以将一个或多个DNA片段按照预定方向、快速、高效和精确地插入到线性化载体中,并且最终构建的克隆没有任何额外的碱基序列,因此被称作“无缝克隆”。如图9中Gibson Assembly所示,红色和绿色2个片段为需要连接的双链DNA片段,它们末端有相同的15-25个重叠序列(黑色),首先在50℃条件下,T5 exonuclease核酸外切酶降解5’端的一些碱基,形成3’端突出的单链,3’端单链互补退火;然后Phusion高保真聚合酶补上两条单链之间的缺口;最后Taq DNA ligase将相邻的单链切口连接补齐形成完整的DNA双链(图6)。

        在Gibson Assembly基础上,研究者开发了TEDA[5],仅添加T5 exonuclease核酸外切酶同样可以实现重组克隆,它与借助细胞体内的DNA修复机制进行缺损DNA的修复(图6)。

( 5 )工具载体

        接下来我们介绍基因克隆中常用的工具载体。按照功能分,载体分为克隆载体和表达载体(表2)。其中克隆载体含有能在原核细胞中复制的元件,用来克隆和扩增基因;表达载体除了具备克隆载体的基本元件外,还具有转录/翻译所必须的DNA顺式元件。以下,我们将以SnapGene或addgene分析的载体结构图进行相关功能元件的说明。

       以pUC19为例,说明克隆载体中的功能元件(图10)。

         复制起始位点( Origin of replication , ORI ): ORI是一段DNA序列,质粒复制的起始位置。DNA解螺旋酶可以作用于这段序列,然后DNA的双链被分开,复制随即开始。质粒必须是能够复制的,否则随着细菌的生长,质粒的数量将会被迅速稀释。 筛选标记,主要指抗生素抗性基因。 在含有抗生素的培养基中培养细菌,能够生长的就是含有目的质粒,因为,不含质粒的细菌已经被“杀死”了,原核中常用的抗性筛选基因有Amp和Kan。 Lac Z :β-半乳糖苷酶基因,也是一种筛选标记,用于蓝白斑筛选。 多克隆位点( multiple cloning site, MCS ), 这是一段短DNA片段,包括多个限制性酶切的单一位点,便于外源基因的插入。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。

       以pcDNA3.1为例,说明表达载体中的功能元件(图11)。

              表达载体pcDNA3.1除了有克隆载体相关元件,如复制起始位点Ori,原核筛选标记Amp外,还有一些其他的功能元件,如表3所示。

        表达载体主要用于表达蛋白或者RNA,例如现在基因编辑中常用的一个表达载体PX458(图12),可以同时表达Cas9蛋白和sgRNA。因此上面也会携带一些其他的功能元件(表4)。

        上面介绍的pcDNA3.1和PX458均是瞬时表达载体并不能在人类等细胞中进行复制,随着细胞的分裂,单个细胞中的质粒不断的被稀释,因此这些载体只能起到瞬时表达的效果。而慢病毒表达载体则可以介导表达元件整合到人类细胞的基因组中,这些表达元件可以随着基因组DNA的复制而复制,因此可以实现稳定表达。

        我们常用的慢病毒载体是以HIV-1(人类免疫缺陷I型病毒)为基础发展起来的基因治疗载体,携带有外源基因的慢病毒载体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装成为有感染力的病毒颗粒,将其进行收集和浓缩后可直接感染宿主细胞或者动物模型,将外源基因有效地整合到宿主的染色体上,从而达到外源基因的持久性表达。我们以pGreenPuro为例说明慢病毒表达载体中一些关键的功能元件(图13,表5)。

(6)感受态细胞

        感受态细胞是采用理化方法诱导过的细胞,它可以吸收周围环境中的DNA分子。实验室中我们常使用 E. coli 进行感受态细胞的制备,主要包括克隆用的感受态细胞和表达用的感受态细胞(图14)。

        如果仅仅是进行质粒扩增,我们一般使用克隆感受态细胞。如果要进行原核蛋白质表达,我们则选择表达感受态细胞。并且感受态细胞的基因型也有很多类,是通过不同基因的缺失形成的,因而使细胞具有不同的特性,以满足不同的需要。例如,进行克隆载体和瞬转表达载体的扩增,常选用 E. coli DH5α,TOP10菌株;而慢病毒载体则一般选择低重组率的 E. coli Stbl3菌株。而对于非甲基化载体的扩增,则需要选择 E. c oli dam-/dcm-  等甲基化酶缺失的菌株。

2.  基因克隆流程

        前面了解了基因克隆使用的相关工具酶和载体,接下来,我们介绍基因克隆的实验流程。细分的话,包括以下10个步骤(表6)。

        下面我们以lncRNA PVT1的克隆和表达,分别采用T/A克隆,传统酶切-酶连克隆和无缝克隆进行示例。

(1) T/A克隆

        T/A克隆是把PCR片段与一个具有3’-T突出的载体DNA连接起来的方法(图15)。使用该方法进行基因克隆时不需要考虑酶切位点问题,但需要选择Taq DNA聚合酶进行PCR扩增,其产物的3’端才会多一个突出的A;此外,T/A克隆选用商业化的T载体,其为线性化的载体,在3’端有一个突出的T;并且基因片段连入T载体是没有方向性的,正反都有可能。

        我们首先从NCBI上获取PVT1(human)的基因序列信息( https ://www.ncbi.nlm.nih.gov/nuccore/MG562504.1 ),然后使用SnapGene等进行PCR引物设计(图16)。以PVT1全长序列(1081nt)为模板,设计的引物正向引物的5’端与PVT1序列的5’端相同,反向引物的5’端与PVT1序列的3’端互补。然后使用Taq DNA 聚合酶,以细胞的cDNA为模板进行PCR,产物经琼脂糖凝胶电泳或割胶回收目的大小片段(图17)。

       胶回收的基因片段与商业化的T载体(pMD-18T)连接,形成重组DNA载体pMD18-PVT1(图18),经转化(图19)和菌落PCR(图20)后筛选到候选阳性克隆,再使用Sanger测序(图21)进行插入序列的鉴定,获得阳性克隆。

(2) 传统酶切 - 酶连克隆

        传统酶切-酶连克隆主要是采用相同的限制性内切酶(或者同尾酶)分别酶切载体和基因片段,然后使用DNA连接酶进行连接,转化。以下,我们同样以PVT1为例,将其使用传统方法克隆至pcDNA3.1表达载体上。

        我们在获得PVT1的基因全长序列后,需要首先进行酶切位点分析,例如使用SnapGene进行常用6碱基识别位点的限制性内切酶位点分析(图22)。同时,我们分析pcDNA3.1中MCS中可用的酶切位点,我们排除PVT1有的限制性内切酶并排除同尾酶(避免载体的自连),即可得到可用的限制性内切酶。在这里我们选择 Nhe I和 Eco R I(图23)。

        接下来,我们以PVT1的全长序列为模板设计克隆引物(SnapGene设计的引物序列与T/A克隆中一样),不过我们还要在引物的5’端添加选择好的限制性内切酶的酶切位点以及相应的保护碱基(图24)。同样使用Taq DNA 聚合酶或者其他高保真DNA聚合酶,以细胞的cDNA为模板进行PCR,产物经琼脂糖凝胶电泳或割胶回收目的大小片段。

       回收的PVT1 PCR产物和pcDNA3.1载体均使用 Nhe I和 Eco R I进行双酶切,其中PVT1由于酶切后的序列为一个约1000bp的片段和一个约5bp的片段,无需进行割胶回收,直接使用PCR产物纯化柱进行酶切产物纯化即可(图25)。而pcDNA3.1的酶切由于可能存在未完全切开的质粒(在后续转化中会形成大量的假阳性克隆),需要进行琼脂糖凝胶电泳,割取线性化的载体片段进行胶回收(图25)。然后将PVT1和pcDNA3.1酶切片段使用DNA连接酶进行连接,转化。同样,使用菌落PCR和Sanger测序进行阳性克隆子pcDNA3.1-PVT1的筛选(图26)。

(3) 无缝克隆

无缝克隆的一个重要优势是不需要考虑待克隆片段中的酶切位点情况,因此直接选择相应的酶切位点将载体线性化后,根据载体的线性化末端进行同源引物的设计,PCR扩增目的基因并纯化后直接进行重组连接和转化(图27)。以下,我们同样以PVT1克隆至pcDNA3.1载体为例进行说明。

       获得PVT1和pcDNA3.1的全长序列后可以使用SnapGene,CE Design(Vazyme)和In-Fusion Clone(Takara)等在线或本地软件进行同源臂引物的设计。

       使用同源臂引物,以细胞cDNA为模板,使用高保真DNA聚合酶为模板进行PCR,胶回收相应片段。pcDNA3.1载体使用 Nhe I和 EcoR I进行双酶切后,割胶回收载体片段。然后添加无缝克隆试剂进行重组连接,转化后进行阳性克隆的筛选与鉴定。

       而实际上,无缝克隆还有另外一个重要的优势:可以同时进行多片段的重组克隆,而这对于传统酶切-酶连克隆是一个很大的挑战。基于传统克隆技术可能需要克隆一个片段后,再在特定位置选择酶切位点,插入第二个片段,依次推进,这样不仅实验周期长,并且会在每个片段之间引入了额外的酶切位点碱基序列,可能影响到基因的完整性。不过可以通过融合PCR的方式,设计末端重叠的引物进行各个克隆片段的融合,但长的基因片段的PCR扩增本身也存在着失败率提高的问题(表8)。

总结

        本部分我们主要介绍了基因克隆中使用的工具酶和载体,并以PVT1的克隆和表达载体的构建为例,分别介绍了T/A克隆、传统酶切-酶连克隆和无缝克隆技术的实验流程。

参考文献

1.     Vasu,K. and V. Nagaraja, Diverse functions of  restriction-modification systems in addition to cellular defense.MicrobiolMol Biol Rev, 2013. 77 (1): p. 53-72.

2.    Loenen, W.A., et al., Highlights of the DNA cutters: a short  history of the restriction enzymes.Nucleic Acids Res, 2014. 42 (1): p. 3-19.

3.     Pingoud, A., G.G. Wilson, and W.Wende, Type II restriction  endonucleases--a historical perspective and more.Nucleic Acids Res, 2014. 42 (12): p. 7489-527.

4.     Gibson, D.G., et al., Enzymatic assembly of DNA molecules up to  several hundred kilobases.Nat Methods, 2009. 6 (5): p. 343-5.

5.      Xia, Y., et al., T5 exonuclease-dependent assembly offers a  low-cost method for efficient cloning and site-directed mutagenesis.Nucleic Acids Res, 2019. 47 (3): p.e15.
参考技术A 这种情况应该是不可以的,如果你要是做了基因克隆,你可以去问医生,看医生怎么说,如果你想要这个宝,你可以去问一下医生,看医生的意见是什么,如果不要,你也可以去问一下医生,看医生是什么意见,你也可以再考虑一下的啊,你要考虑好啊,你也可以问一下医生,看医生的意见是什么,你也可以再考虑一下的啊,不要太着急了啊,你要是太着急了,对你自己也不好啊,你说呢,你说是不是啊,你自己考虑吧,我说的是真的啊,不骗你啊,你要是不相信我,你可以去问医生。

以上是关于构建基因文库的目的和意义?的主要内容,如果未能解决你的问题,请参考以下文章

为啥构建基因文库?直接从生物体内提取不行吗

基因组文库名词解释

二代测序文库构建-概述与挑战(1)

基因克隆

关于重叠PCR加的那20bp,求大虾解答!在线等!

hadoop研究的目的和意义