Pytorch学习笔记神经网络的使用

Posted 小胡今天有变强吗

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pytorch学习笔记神经网络的使用相关的知识,希望对你有一定的参考价值。

文章目录

神经网络的基本骨架–nn.Moudle的使用

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output

tudui = Tudui()
x = torch.tensor(1)
output = tudui(x)
print(output)

卷积操作

import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0 ,1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

其中,input是输入图像,kernel是卷积核的大小,stride是步长,padding是填充的距离。

神经网络-卷积层

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data_conv2d", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x

tudui = Tudui()

writer = SummaryWriter("../logs")
step = 0
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(imgs.shape)
    print(output.shape)
    # torch.Size([64, 3, 32, 32])
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30]) -> [xxx, 3, 30, 30]
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)
    step += 1

神经网络-最大池化的使用

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, download=True, transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)

# input = torch.tensor([[1, 2,0, 3, 1],
#                       [0, 1, 2, 3, 1],
#                       [1, 2, 1, 0, 0],
#                       [5, 2, 3, 1, 1],
#                       [2, 1, 0, 1, 1]], dtype=torch.float32)
# input = torch.reshape(input, (-1, 1, 5, 5))
# print(input.shape)



class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output

tudui = Tudui()
# output = tudui(input)
# print(output)

writer = SummaryWriter("../logs_maxpool")
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output", output, step)
    step += 1

writer.close()

神经网络-非线性激活

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output

tudui = Tudui()
output = tudui(input)
print(output)

线性层

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=64, drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, input):
        output = self.linear1(input)
        return output

tudui = Tudui()
for data in dataloader:
    imgs, target = data
    print(imgs.shape)
    output = torch.flatten(imgs)
    print(output.shape)
    output = tudui(output)
    print(output.shape)

搭建实战与Sequential的使用

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

tudui = Tudui()
print(tudui)

input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)

注意padding=2,需要通过下面公式计算:



使用Sequential:

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        # self.conv1 = Conv2d(3, 32, 5, padding=2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32, 32, 5, padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32, 64, 5, padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024, 64)
        # self.linear2 = Linear(64, 10)

        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.model1(x)
        return x

tudui = Tudui()
print(tudui)

input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)

writer = SummaryWriter("../logs_seq")
writer.add_graph(tudui, input)
writer.close()



双击模型中的模块可以展开细节:

损失函数与反向传播

import torch
from torch.nn import L1Loss

inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss(reduction='sum')
result = loss(inputs, targets)
print(result)

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    outputs = tudui(imgs)
    result_loss = loss(outputs, targets)
    print(result_loss)

优化器

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset, batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
tudui = Tudui()
optim = torch.optim.SGD(tudui.parametersPytorch学习笔记神经网络的使用

PyTorch学习笔记 4. 定义神经网络

PyTorch学习笔记 4. 定义神经网络

pytorch学习笔记第四篇——神经网络

学习笔记图神经网络库 DGL 入门教程(backend pytorch)

pytorch学习笔记:卷积神经网络CNN(基础篇)