python 潜在语义分析(LSA)[简单例子]
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 潜在语义分析(LSA)[简单例子]相关的知识,希望对你有一定的参考价值。
#!/usr/bin/python
# reference => http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html
from numpy import zeros
from scipy.linalg import svd
from math import log # needed for TFIDF
from numpy import asarray, sum
titles = ["The Neatest Little Guide to Stock Market Investing",
"Investing For Dummies, 4th Edition",
"The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock Market Returns",
"The Little Book of Value Investing",
"Value Investing: From Graham to Buffett and Beyond",
"Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!",
"Investing in Real Estate, 5th Edition",
"Stock Investing For Dummies",
"Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most Investors Miss"
]
stopwords = ['and','edition','for','in','little','of','the','to']
ignorechars = ''',:'!'''
class LSA(object):
def __init__(self, stopwords, ignorechars):
self.stopwords = stopwords
self.ignorechars = ignorechars
self.wdict = {}
self.dcount = 0
def parse(self, doc):
words = doc.split();
for w in words:
w = w.lower().translate(None, self.ignorechars)
if w in self.stopwords:
continue
elif w in self.wdict:
self.wdict[w].append(self.dcount)
else:
self.wdict[w] = [self.dcount]
self.dcount += 1
# rows -> keywords (occur more than twice), cols -> documentID
def build(self):
self.keys = [k for k in self.wdict.keys() if len(self.wdict[k]) > 1]
self.keys.sort()
self.A = zeros([len(self.keys), self.dcount])
for i, k in enumerate(self.keys):
for d in self.wdict[k]:
self.A[i,d] += 1
def calc(self):
self.U, self.S, self.Vt = svd(self.A)
def TFIDF(self):
WordsPerDoc = sum(self.A, axis=0)
DocsPerWord = sum(asarray(self.A > 0, 'i'), axis=1)
rows, cols = self.A.shape
for i in range(rows):
for j in range(cols):
self.A[i,j] = (self.A[i,j] / WordsPerDoc[j]) * log(float(cols) / DocsPerWord[i])
def printA(self):
print 'Here is the count matrix'
print self.A
def printSVD(self):
print 'Here are the singular values'
print self.S
print 'Here are the first 3 columns of the U matrix'
print -1*self.U[:, 0:3]
print 'Here are the first 3 rows of the Vt matrix'
print -1*self.Vt[0:3, :]
def TFIDF(self):
WordsPerDoc = sum(self.A, axis=0)
DocsPerWord = sum(asarray(self.A > 0, 'i'), axis=1)
rows, cols = self.A.shape
for i in range(rows):
for j in range(cols):
self.A[i,j] = (self.A[i,j] / WordsPerDoc[j]) * log(float(cols) / DocsPerWord[i])
@staticmethod
def main():
mylsa = LSA(stopwords, ignorechars)
for t in titles:
mylsa.parse(t)
mylsa.build()
mylsa.printA()
mylsa.calc()
mylsa.printSVD()
if __name__ == '__main__':
LSA.main()
以上是关于python 潜在语义分析(LSA)[简单例子]的主要内容,如果未能解决你的问题,请参考以下文章
潜在语义分析(Latent Semantic Analysis)