Applying and Inverting Transformations [on mask]

Posted yusani

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Applying and Inverting Transformations [on mask]相关的知识,希望对你有一定的参考价值。

cr: http://fsl.fmrib.ox.ac.uk/fslcourse/2019_Beijing/lectures/Registration/FSL_Registration_Practical.pdf

the story starts from a question...

If we were interested in the functional signal in (for example) the amygdala within the fMRI data in a particular subject, which space would we transform a standard mask of the amygdala into for further processing?

  • The structural space - we want to make sure we get the most accurate signal from the data, and this is when the image is in structural space

  • The distortion-corrected functional space - we do our task analysis in functional space, once it has been corrected for distortions

  • The native functional space - we do our task analysis in functional space, without any registrations applied

the correct answer is no.2. but how come?

 

0.1. get familiar with transformation files

  • highres2standard.mat
  • highres2standard_warp.nii.gz
  • ...

0.2 three main spaces in a FEAT analysis

  • functional (represented by example_func);
  • structural (represented by highres);
  • MNI (represented by standard)

 

 

1. Creating an example mask [in MNI space] [from existing Atlases]

fsleyes -std &

......gui acts

2. Inverting a transform [to get std2highres_warp)

invwarp -w highres2standard_warp -o standard2highres_warp -r highres

技术图片

3. Applying a transformation

applywarp -i LeftHippMask -r example_func -o LeftHippMaskFunc -w standard2highres_warp --postmat=highres2example_func.mat

技术图片

 

4. Thresholding the Mask [now in func space] [to make it binary]

4.1 to choose 1)0.9, tighter; 2)0.5, of similar size/volume as before; 3)0.1, ok to include neighbouring stuctures.

4.2 

fslmaths LeftHippMaskFunc -thr 0.9 -bin LeftHippMaskFuncBin

5. Using the Mask

e.g. 

fslmeants -i ../filtered_func_data -m LeftHippMaskFuncBin

【Q】why filtered_func_data, the pre-processed fMRI data

 

 

以上是关于Applying and Inverting Transformations [on mask]的主要内容,如果未能解决你的问题,请参考以下文章

斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互

Java Inverting Switch语句

Involution: Inverting the Inherence of Convolution for Visual Recognition

阅读笔记Inverting Gradients -- How easy is it to break privacy in federated learning?

《Involution:Inverting the Inherence of Convolution for Visual Recognition》论文笔记

UIView bounds.applying 但有旋转