在 spark 1.6 中计数(不同)不能与 hivecontext 查询一起使用
Posted
技术标签:
【中文标题】在 spark 1.6 中计数(不同)不能与 hivecontext 查询一起使用【英文标题】:Having count(distinct) not working with hivecontext query in spark 1.6 【发布时间】:2016-11-02 16:10:37 【问题描述】:最近我们进行了从 1.3 到 1.6 版本的 spark 更新,在此更新之后,具有“具有计数(不同)”条件的查询不起作用,我们收到以下错误
查询 ::
hiveContext.sql( "select A1.x, A1.y, A1.z from (select concat(g,h) as x, y, z from raw_parquet where f = '') A1 group by A1.x, A1.y,A1.z having count(distinct(A1.z)) > 1").show()
“具有 count(*) 的查询工作正常”
例如:
hiveContext.sql( "select A1.x, A1.y, A1.z from (select concat(g,h) as x, y, z from raw_parquet where f = '') A1 group by A1.x, A1.y,A1.z having count(*) > 1").show()
如果有任何解决方案,请告诉我们。非常感谢
错误::
org.apache.spark.sql.AnalysisException: resolved attribute(s) gid#687,z#688 missing from x#685,y#252,z#255 in operator !Aggregate [x#685,y#252], [cast(((count(if ((gid#687 = 1)) z#688 else null),mode=Complete,isDistinct=false) > cast(1 as bigint)) as boolean) AS havingCondition#686,x#685,y#252];
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:38)
at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:44)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:183)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:121)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:120)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:120)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:120)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:120)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:44)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:817)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:36)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:42)
at $iwC$$iwC$$iwC.<init>(<console>:44)
at $iwC$$iwC.<init>(<console>:46)
at $iwC.<init>(<console>:48)
at <init>(<console>:50)
at .<init>(<console>:54)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1045)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1326)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:821)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:852)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:800)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1064)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
【问题讨论】:
【参考方案1】:试试这样的:
df.groupBy("x").count().filter($"count" >= 1).show()
或
import org.apache.spark.sql.functions.count
df.groupBy("x").agg(count("*").alias("cnt")).where($"cnt" > 1)
【讨论】:
以上是关于在 spark 1.6 中计数(不同)不能与 hivecontext 查询一起使用的主要内容,如果未能解决你的问题,请参考以下文章
Spark 2.0 将 json 读入带有引号的数据帧中 - 与 spark 1.6 不同的行为......错误?