Radix-4 FFT 实现
Posted
技术标签:
【中文标题】Radix-4 FFT 实现【英文标题】:Radix-4 FFT implementation 【发布时间】:2012-08-15 11:51:27 【问题描述】:如果我逐个设置4
(xp) 值的幂,则下面的 Octave radix-4
FFT 代码可以正常工作。
$ octave fft4.m
ans = 1.4198e-015
但是,如果我取消注释循环代码,我会收到以下错误
$ octave fft4.m
error: `stage' undefined near line 48 column 68
error: evaluating argument list element number 1
error: evaluating argument list element number 2
error: called from:
error: r4fftN at line 48, column 22
error: c:\Users\david\Documents\Visual Studio 2010\Projects\mv_fft\fft4.m at line 80, column 7
the "error" refers to a line the in fft function code which otherwise works correctly when xp is not set by a loop ... very strange.
function Z = radix4bfly(x,segment,stageFlag,W)
% For the last stage of a radix-4 FFT all the ABCD multiplers are 1.
% Use the stageFlag variable to indicate the last stage
% stageFlag = 0 indicates last FFT stage, set to 1 otherwise
% Initialize variables and scale to 1/4
a=x(1)*.25;
b=x(2)*.25;
c=x(3)*.25;
d=x(4)*.25;
% Radix-4 Algorithm
A=a+b+c+d;
B=(a-b+c-d)*W(2*segment*stageFlag + 1);
C=(a-b*j-c+d*j)*W(segment*stageFlag + 1);
D=(a+b*j-c-d*j)*W(3*segment*stageFlag + 1);
% assemble output
Z = [A B C D];
end % radix4bfly()
% radix-4 DIF FFT, input signal must be floating point, real or complex
%
function S = r4fftN(s)
% Initialize variables and signals: length of input signal is a power of 4
N = length(s);
M = log2(N)/2;
% Initialize variables for floating point sim
W=exp(-j*2*pi*(0:N-1)/N);
S = complex(zeros(1,N));
sTemp = complex(zeros(1,N));
% FFT algorithm
% Calculate butterflies for first M-1 stages
sTemp = s;
for stage = 0:M-2
for n=1:N/4
S((1:4)+(n-1)*4) = radix4bfly(sTemp(n:N/4:end), floor((n-1)/(4^stage)) *(4^stage), 1, W);
end
sTemp = S;
end
% Calculate butterflies for last stage
for n=1:N/4
S((1:4)+(n-1)*4) = radix4bfly(sTemp(n:N/4:end), floor((n-1)/(4^stage)) * (4^
stage), 0, W);
end
sTemp = S;
% Rescale the final output
S = S*N;
end % r4fftN(s)
% test FFT code
%
xp = 2;
% ERROR if I uncomment loop!
%for xp=1:8
N = 4^xp; % must be power of: 4 16 64 256 1024 4086 ....
x = 2*pi/N * (0:N-1);
x = cos(x);
Y_ref = fft(x);
Y = r4fftN(x);
Y = digitrevorder(Y,4);
%Y = bitrevorder(Y,4);
abs(sum(Y_ref-Y)) % compare fft4 to built-in fft
%end
【问题讨论】:
【参考方案1】:问题是指数 xp 的循环边界应该从 2 开始,因为 fft4 代码假定至少 2 个阶段的 radix-4 蝴蝶
对不起各位:(
-大卫
【讨论】:
原始FFT代码的来源是mathworks.com/matlabcentral/fileexchange/…我的测试代码只是针对matlab/octave内置的fft()进行测试【参考方案2】:请在下面找到radix-4 Decimation In Frequency FFT 算法的完整工作 Matlab 实现。我还提供了复杂矩阵乘法和加法方面的总体操作计数。确实可以证明每个 radix-4 蝴蝶都涉及3
复数乘法和8
复数加法。由于有log_4(N) = log_2(N) / 2
阶段,每个阶段都涉及N / 4
蝴蝶,所以操作数为
complex multiplications = (3 / 8) * N * log2(N)
complex additions = N * log2(N)
代码如下:
% --- Radix-2 Decimation In Frequency - Iterative approach
clear all
close all
clc
% --- N should be a power of 4
N = 1024;
% x = randn(1, N);
x = zeros(1, N);
x(1 : 10) = 1;
xoriginal = x;
xhat = zeros(1, N);
numStages = log2(N) / 2;
W = exp(-1i * 2 * pi * (0 : N - 1) / N);
omegaa = exp(-1i * 2 * pi / N);
mulCount = 0;
sumCount = 0;
M = N / 4;
for p = 1 : numStages;
for index = 0 : (N / (4^(p - 1))) : (N - 1);
for n = 0 : M - 1;
a = x(n + index + 1) + x(n + index + M + 1) + x(n + index + 2 * M + 1) + x(n + index + 3 * M + 1);
b = (x(n + index + 1) - x(n + index + M + 1) + x(n + index + 2 * M + 1) - x(n + index + 3 * M + 1)) .* omegaa^(2 * (4^(p - 1) * n));
c = (x(n + index + 1) - 1i * x(n + index + M + 1) - x(n + index + 2 * M + 1) + 1i * x(n + index + 3 * M + 1)) .* omegaa^(1 * (4^(p - 1) * n));
d = (x(n + index + 1) + 1i * x(n + index + M + 1) - x(n + index + 2 * M + 1) - 1i * x(n + index + 3 * M + 1)) .* omegaa^(3 * (4^(p - 1) * n));
x(n + 1 + index) = a;
x(n + M + 1 + index) = b;
x(n + 2 * M + 1 + index) = c;
x(n + 3 * M + 1 + index) = d;
mulCount = mulCount + 3;
sumCount = sumCount + 8;
end;
end;
M = M / 4;
end
xhat = bitrevorder(x);
tic
xhatcheck = fft(xoriginal);
timeFFTW = toc;
rms = 100 * sqrt(sum(sum(abs(xhat - xhatcheck).^2)) / sum(sum(abs(xhat).^2)));
fprintf('Theoretical multiplications count \t = %i; \t Actual multiplications count \t = %i\n', ...
(3 / 8) * N * log2(N), mulCount);
fprintf('Theoretical additions count \t\t = %i; \t Actual additions count \t\t = %i\n\n', ...
N * log2(N), sumCount);
fprintf('Root mean square with FFTW implementation = %.10e\n', rms);
【讨论】:
以上是关于Radix-4 FFT 实现的主要内容,如果未能解决你的问题,请参考以下文章