是否有考虑偏差和方差的损失函数?
Posted
技术标签:
【中文标题】是否有考虑偏差和方差的损失函数?【英文标题】:Is there a loss function considering bias and variance? 【发布时间】:2022-01-16 13:59:54 【问题描述】:我正在尝试更多地了解偏差和方差。
我想知道是否存在考虑偏差和方差的损失函数。 据我所知,高偏差会导致欠拟合,而高方差会导致过拟合。
图片来自here
如果我们可以考虑损失中的偏差和方差,它可能是这样的,bias(x) + variance(x) + some_other_loss(x)
。我的好奇点分为两部分。
-
如果我们通常使用的损失已经考虑了偏差和方差,我如何在分数中分别衡量偏差和方差?
我认为,这类问题可能是一个基本的数学问题。如果您对此有任何提示,我将不胜感激。
感谢您阅读我的奇怪问题。
写完问题后,我意识到正则化是减少方差的方法之一。那么,3)这是衡量分数偏差的方法吗?
再次感谢您。
2022 年 1 月 16 日更新
我已经搜索了一下并回答了自己。如有理解错误,请在下方评论。
-
在训练过程中,Bais 由损失值表示,因此我们不需要额外的偏差损失函数。
但是对于方差,没有办法评分,因为如果我们想测量它,我们应该得到训练损失和未见数据的损失。但是一旦我们使用看不见的数据作为训练损失,看不见的数据就是看得见的数据。因此,就模型而言,这将不再是看不见的数据。据我所知,没有办法衡量训练损失的方差。
我希望其他人可以得到帮助,如果你有想法,请评论你的想法。
【问题讨论】:
【参考方案1】:正如您已经明确指出的那样,高偏差 -> 模型与 良好拟合 相比是欠拟合的,而高方差 -> 与 良好拟合 相比是过拟合的。 测量它们中的任何一个都需要您提前知道良好拟合,这恰好是训练模型的最终目标。因此,在训练本身期间不可能测量 underfitting 或 overfitting。但是,如果您可以了解目标损失量,则可以使用提前停止回调在 良好拟合 附近停止。
【讨论】:
以上是关于是否有考虑偏差和方差的损失函数?的主要内容,如果未能解决你的问题,请参考以下文章