如何阻止梯度提升机过拟合?

Posted

技术标签:

【中文标题】如何阻止梯度提升机过拟合?【英文标题】:How to stop gradient boosting machine from overfitting? 【发布时间】:2019-08-30 19:24:59 【问题描述】:

我在一个多分类问题上比较了几个模型(梯度提升机、随机森林、逻辑回归、SVM、多层感知器和 keras 神经网络)。我在我的模型上使用了嵌套交叉验证和网格搜索,在我的实际数据和随机数据上运行这些以检查过度拟合。然而,对于我正在寻找的梯度提升机器,无论我如何更改我的数据或模型参数,它每次都能为我提供 100% 的随机数据准确率。我的代码中是否存在可能导致此问题的内容?

这是我的代码:

dataset= pd.read_csv('data.csv')
data = dataset.drop(["gene"],1)
df = data.iloc[:,0:26]
df = df.fillna(0)
X = MinMaxScaler().fit_transform(df)

le = preprocessing.LabelEncoder()
encoded_value = le.fit_transform(["certain", "likely", "possible", "unlikely"])
Y = le.fit_transform(data["category"])

sm = SMOTE(random_state=100)
X_res, y_res = sm.fit_resample(X, Y)

seed = 7
logreg = LogisticRegression(penalty='l1', solver='liblinear',multi_class='auto')
LR_par= 'penalty':['l1'], 'C': [0.5, 1, 5, 10], 'max_iter':[100, 200, 500, 1000]

rfc =RandomForestClassifier(n_estimators=500)
param_grid = "max_depth": [3],
             "max_features": ["auto"],
              "min_samples_split": [2],
              "min_samples_leaf": [1],
              "bootstrap": [False],
              "criterion": ["entropy", "gini"]


mlp = MLPClassifier(random_state=seed)
parameter_space = 'hidden_layer_sizes': [(50,50,50)],
     'activation': ['relu'],
     'solver': ['adam'],
     'max_iter': [10000],
     'alpha': [0.0001],
     'learning_rate': ['constant']

gbm = GradientBoostingClassifier()
param = "loss":["deviance"],
    "learning_rate": [0.001],
    "min_samples_split": [2],
    "min_samples_leaf": [1],
    "max_depth":[3],
    "max_features":["auto"],
    "criterion": ["friedman_mse"],
    "n_estimators":[50]
    

svm = SVC(gamma="scale")
tuned_parameters = 'kernel':('linear', 'rbf'), 'C':(1,0.25,0.5,0.75)

inner_cv = KFold(n_splits=10, shuffle=True, random_state=seed)

outer_cv = KFold(n_splits=10, shuffle=True, random_state=seed)


def baseline_model():

    model = Sequential()
    model.add(Dense(100, input_dim=X_res.shape[1], activation='relu')) #dense layers perform: output = activation(dot(input, kernel) + bias).
    model.add(Dropout(0.5))
    model.add(Dense(50, activation='relu')) #8 is the dim/ the number of hidden units (units are the kernel)
    model.add(Dense(4, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

models = []

models.append(('GBM', GridSearchCV(gbm, param, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('RFC', GridSearchCV(rfc, param_grid, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('LR', GridSearchCV(logreg, LR_par, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('SVM', GridSearchCV(svm, tuned_parameters, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('MLP', GridSearchCV(mlp, parameter_space, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('Keras', KerasClassifier(build_fn=baseline_model, epochs=100, batch_size=50, verbose=0)))

results = []
names = []
scoring = 'accuracy'
X_train, X_test, Y_train, Y_test = train_test_split(X_res, y_res, test_size=0.2, random_state=0)


for name, model in models:
    nested_cv_results = model_selection.cross_val_score(model, X_res, y_res, cv=outer_cv, scoring=scoring)
    results.append(nested_cv_results)
    names.append(name)
    msg = "Nested CV Accuracy %s: %f (+/- %f )" % (name, nested_cv_results.mean()*100, nested_cv_results.std()*100)
    print(msg)
    model.fit(X_train, Y_train)
    print('Test set accuracy: :.2f'.format(model.score(X_test, Y_test)*100),  '%')

输出:

Nested CV Accuracy GBM: 90.952381 (+/- 2.776644 )
Test set accuracy: 90.48 %
Nested CV Accuracy RFC: 79.285714 (+/- 5.112122 )
Test set accuracy: 75.00 %
Nested CV Accuracy LR: 91.904762 (+/- 4.416009 )
Test set accuracy: 92.86 %
Nested CV Accuracy SVM: 94.285714 (+/- 3.563483 )
Test set accuracy: 96.43 %
Nested CV Accuracy MLP: 91.428571 (+/- 4.012452 )
Test set accuracy: 92.86 %

随机数据代码:

ran = np.random.randint(4, size=161)
random = np.random.normal(500, 100, size=(161,161))
rand = np.column_stack((random, ran))
print(rand.shape)
X1 = rand[:161]
Y1 = rand[:,-1]
print("Random data counts of label '1': ".format(sum(ran==1)))
print("Random data counts of label '0': ".format(sum(ran==0)))
print("Random data counts of label '2': ".format(sum(ran==2)))
print("Random data counts of label '3': ".format(sum(ran==3)))

for name, model in models:
    cv_results = model_selection.cross_val_score(model, X1, Y1,  cv=outer_cv, scoring=scoring)
    names.append(name)
    msg = "Random data CV %s: %f (+/- %f)" % (name, cv_results.mean()*100, cv_results.std()*100)
    print(msg)

随机数据输出:

Random data CV GBM: 100.000000 (+/- 0.000000)
Random data CV RFC: 62.941176 (+/- 15.306485)
Random data CV LR: 23.566176 (+/- 6.546699)
Random data CV SVM: 22.352941 (+/- 6.331220)
Random data CV MLP: 23.639706 (+/- 7.371392)
Random data CV Keras: 22.352941 (+/- 8.896451)

无论我减少特征数量还是更改网格搜索中的参数,这个梯度提升分类器 (GBM) 都是 100%这个问题暂时),如果我尝试二进制分类数据也是一样的。

随机森林 (RFC) 也高达 62%,是我做错了什么吗?

我使用的数据主要是二元特征,例如如下所示(并预测类别列):

gene   Tissue    Druggable Eigenvalue CADDvalue Catalogpresence   Category
ACE      1           1         1          0           1            Certain
ABO      1           0         0          0           0            Likely
TP53     1           1         0          0           0            Possible

任何指导将不胜感激。

【问题讨论】:

也许是一个有趣的相关问题:stats.stackexchange.com/questions/372676/… 您好,感谢您分享此内容,作为初学者,我会进一步研究,但乍一看,我是否认为这意味着我的模型可能以某种方式以无限深度工作?跨度> 您可能对以下Does gradient boosting overfit 感兴趣,其中我重点介绍了在梯度提升算法中修改估计器数量的影响。 【参考方案1】:

一般来说,您可以使用一些参数来减少过度拟合。最容易从概念上理解的就是增加min_samples_split 和min_samples_leaf。为这些设置更高的值将不允许模型记住如何正确识别单个数据或非常小的数据组。对于大型数据集(约 1 百万行),我会将这些值放在 50 左右,如果不是更高的话。您可以进行网格搜索以找到适合您的特定数据的值。

您还可以使用 subsample 以及 max_features 来减少过拟合。这些参数基本上不会让您的模型查看一些阻止它记忆的数据。

【讨论】:

非常感谢,这个答案非常清楚,对我来说已经很清楚了。再次尝试梯度提升和随机森林,增加分割和叶子,将准确度降低到 20% 范围,类似于其他模型。谢谢!

以上是关于如何阻止梯度提升机过拟合?的主要内容,如果未能解决你的问题,请参考以下文章

这个分类模型是不是过拟合?

梯度下降,过拟合,正则化之机器学习

梯度下降过拟合和归一化

ng机器学习视频笔记 ——过拟合与正则化

什么是过拟合?如何避免过拟合问题?

Tensorflow 2.0|网络优化与参数选择及Dropout抑制过拟合原则