python上的迭代最近点(ICP)实现
Posted
技术标签:
【中文标题】python上的迭代最近点(ICP)实现【英文标题】:Iterative Closest Point (ICP) implementation on python 【发布时间】:2013-12-05 21:19:26 【问题描述】:最近一直在寻找python中ICP算法的实现,没有结果。
根据***文章http://en.wikipedia.org/wiki/Iterative_closest_point,算法步骤为:
按最近邻标准关联点(为一个点云中的每个点找到第二个点云中的最近点)。
使用均方成本函数估计变换参数(旋转和平移)(变换会将每个点与其在上一步中找到的匹配最佳对齐)。
使用估计的参数变换点。
迭代(重新关联点等)。
嗯,我知道 ICP 是一种非常有用的算法,它被用于各种应用。但是我在 Python 中找不到任何内置的解决方案。是吗,我在这里遗漏了什么?
【问题讨论】:
嗨,Harry,很高兴您想分享一个解决方案,但请通过发布一个实际问题的答案来做到这一点。如果你愿意,你甚至可以自己写问题......见:blog.***.com/2011/07/… 谢谢Shog9,我以前没有读过那个博客。我为此道歉! 【参考方案1】:我从针对实时视频优化的现有项目进行了更新。
代码适用于 python 3.7 和相关的 opencv 库。
def icp(a, b,
max_time = 1
):
import cv2
import numpy
import copy
import pylab
import time
import sys
import sklearn.neighbors
import scipy.optimize
def res(p,src,dst):
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
[0 ,0 ,1 ]])
n = numpy.size(src,0)
xt = numpy.ones([n,3])
xt[:,:-1] = src
xt = (xt*T.T).A
d = numpy.zeros(numpy.shape(src))
d[:,0] = xt[:,0]-dst[:,0]
d[:,1] = xt[:,1]-dst[:,1]
r = numpy.sum(numpy.square(d[:,0])+numpy.square(d[:,1]))
return r
def jac(p,src,dst):
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
[0 ,0 ,1 ]])
n = numpy.size(src,0)
xt = numpy.ones([n,3])
xt[:,:-1] = src
xt = (xt*T.T).A
d = numpy.zeros(numpy.shape(src))
d[:,0] = xt[:,0]-dst[:,0]
d[:,1] = xt[:,1]-dst[:,1]
dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])],
[ numpy.cos(p[2]),-numpy.sin(p[2])]])
dUdth = (src*dUdth_R.T).A
g = numpy.array([ numpy.sum(2*d[:,0]),
numpy.sum(2*d[:,1]),
numpy.sum(2*(d[:,0]*dUdth[:,0]+d[:,1]*dUdth[:,1])) ])
return g
def hess(p,src,dst):
n = numpy.size(src,0)
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]],
[0 ,0 ,1 ]])
n = numpy.size(src,0)
xt = numpy.ones([n,3])
xt[:,:-1] = src
xt = (xt*T.T).A
d = numpy.zeros(numpy.shape(src))
d[:,0] = xt[:,0]-dst[:,0]
d[:,1] = xt[:,1]-dst[:,1]
dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])],[numpy.cos(p[2]),-numpy.sin(p[2])]])
dUdth = (src*dUdth_R.T).A
H = numpy.zeros([3,3])
H[0,0] = n*2
H[0,2] = numpy.sum(2*dUdth[:,0])
H[1,1] = n*2
H[1,2] = numpy.sum(2*dUdth[:,1])
H[2,0] = H[0,2]
H[2,1] = H[1,2]
d2Ud2th_R = numpy.matrix([[-numpy.cos(p[2]), numpy.sin(p[2])],[-numpy.sin(p[2]),-numpy.cos(p[2])]])
d2Ud2th = (src*d2Ud2th_R.T).A
H[2,2] = numpy.sum(2*(numpy.square(dUdth[:,0])+numpy.square(dUdth[:,1]) + d[:,0]*d2Ud2th[:,0]+d[:,0]*d2Ud2th[:,0]))
return H
t0 = time.time()
init_pose = (0,0,0)
src = numpy.array([a.T], copy=True).astype(numpy.float32)
dst = numpy.array([b.T], copy=True).astype(numpy.float32)
Tr = numpy.array([[numpy.cos(init_pose[2]),-numpy.sin(init_pose[2]),init_pose[0]],
[numpy.sin(init_pose[2]), numpy.cos(init_pose[2]),init_pose[1]],
[0, 0, 1 ]])
print("src",numpy.shape(src))
print("Tr[0:2]",numpy.shape(Tr[0:2]))
src = cv2.transform(src, Tr[0:2])
p_opt = numpy.array(init_pose)
T_opt = numpy.array([])
error_max = sys.maxsize
first = False
while not(first and time.time() - t0 > max_time):
distances, indices = sklearn.neighbors.NearestNeighbors(n_neighbors=1, algorithm='auto',p = 3).fit(dst[0]).kneighbors(src[0])
p = scipy.optimize.minimize(res,[0,0,0],args=(src[0],dst[0, indices.T][0]),method='Newton-CG',jac=jac,hess=hess).x
T = numpy.array([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],[numpy.sin(p[2]), numpy.cos(p[2]),p[1]]])
p_opt[:2] = (p_opt[:2]*numpy.matrix(T[:2,:2]).T).A
p_opt[0] += p[0]
p_opt[1] += p[1]
p_opt[2] += p[2]
src = cv2.transform(src, T)
Tr = (numpy.matrix(numpy.vstack((T,[0,0,1])))*numpy.matrix(Tr)).A
error = res([0,0,0],src[0],dst[0, indices.T][0])
if error < error_max:
error_max = error
first = True
T_opt = Tr
p_opt[2] = p_opt[2] % (2*numpy.pi)
return T_opt, error_max
def main():
import cv2
import numpy
import random
import matplotlib.pyplot
n1 = 100
n2 = 75
bruit = 1/10
center = [random.random()*(2-1)*3,random.random()*(2-1)*3]
radius = random.random()
deformation = 2
template = numpy.array([
[numpy.cos(i*2*numpy.pi/n1)*radius*deformation for i in range(n1)],
[numpy.sin(i*2*numpy.pi/n1)*radius for i in range(n1)]
])
data = numpy.array([
[numpy.cos(i*2*numpy.pi/n2)*radius*(1+random.random()*bruit)+center[0] for i in range(n2)],
[numpy.sin(i*2*numpy.pi/n2)*radius*deformation*(1+random.random()*bruit)+center[1] for i in range(n2)]
])
T,error = icp(data,template)
dx = T[0,2]
dy = T[1,2]
rotation = numpy.arcsin(T[0,1]) * 360 / 2 / numpy.pi
print("T",T)
print("error",error)
print("rotation°",rotation)
print("dx",dx)
print("dy",dy)
result = cv2.transform(numpy.array([data.T], copy=True).astype(numpy.float32), T).T
matplotlib.pyplot.plot(template[0], template[1], label="template")
matplotlib.pyplot.plot(data[0], data[1], label="data")
matplotlib.pyplot.plot(result[0], result[1], label="result: "+str(rotation)+"° - "+str([dx,dy]))
matplotlib.pyplot.legend(loc="upper left")
matplotlib.pyplot.axis('square')
matplotlib.pyplot.show()
if __name__ == "__main__":
main()
【讨论】:
完美的工作!!!!!!!我把它保存在 Kaggle kaggle.com/demetrypascal2/icp-algorithm-test 很棒的新东西,这是我最后一个学生项目的结果! (还有一些问题,我认为可以改进!)【参考方案2】:最后,我设法使用 sklearn 和 opencv 库在 Python 中编写了自己的 ICP 实现。
该函数采用两个数据集,一个初始相对姿态估计和所需的迭代次数。 它返回一个将第一个数据集转换为第二个数据集的转换矩阵。
享受吧!
import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
def icp(a, b, init_pose=(0,0,0), no_iterations = 13):
'''
The Iterative Closest Point estimator.
Takes two cloudpoints a[x,y], b[x,y], an initial estimation of
their relative pose and the number of iterations
Returns the affine transform that transforms
the cloudpoint a to the cloudpoint b.
Note:
(1) This method works for cloudpoints with minor
transformations. Thus, the result depents greatly on
the initial pose estimation.
(2) A large number of iterations does not necessarily
ensure convergence. Contrarily, most of the time it
produces worse results.
'''
src = np.array([a.T], copy=True).astype(np.float32)
dst = np.array([b.T], copy=True).astype(np.float32)
#Initialise with the initial pose estimation
Tr = np.array([[np.cos(init_pose[2]),-np.sin(init_pose[2]),init_pose[0]],
[np.sin(init_pose[2]), np.cos(init_pose[2]),init_pose[1]],
[0, 0, 1 ]])
src = cv2.transform(src, Tr[0:2])
for i in range(no_iterations):
#Find the nearest neighbours between the current source and the
#destination cloudpoint
nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto',
warn_on_equidistant=False).fit(dst[0])
distances, indices = nbrs.kneighbors(src[0])
#Compute the transformation between the current source
#and destination cloudpoint
T = cv2.estimateRigidTransform(src, dst[0, indices.T], False)
#Transform the previous source and update the
#current source cloudpoint
src = cv2.transform(src, T)
#Save the transformation from the actual source cloudpoint
#to the destination
Tr = np.dot(Tr, np.vstack((T,[0,0,1])))
return Tr[0:2]
这样称呼它:
#Create the datasets
ang = np.linspace(-np.pi/2, np.pi/2, 320)
a = np.array([ang, np.sin(ang)])
th = np.pi/2
rot = np.array([[np.cos(th), -np.sin(th)],[np.sin(th), np.cos(th)]])
b = np.dot(rot, a) + np.array([[0.2], [0.3]])
#Run the icp
M2 = icp(a, b, [0.1, 0.33, np.pi/2.2], 30)
#Plot the result
src = np.array([a.T]).astype(np.float32)
res = cv2.transform(src, M2)
plt.figure()
plt.plot(b[0],b[1])
plt.plot(res[0].T[0], res[0].T[1], 'r.')
plt.plot(a[0], a[1])
plt.show()
【讨论】:
我在这个实现中遇到了一些问题(cv.estimateRigidTransform() 有时返回 None)。所以我用 scipy.optimize 的 Newton-CG 重新做了。它现在可以处理非常糟糕的初始猜测(例如,我用初始猜测 (0,0,0) 和 0.2+5,0.3-7,th+0.7 尝试了您的示例)并且效果很好。代码在:gist.github.com/ecward/c373932638fd04a2243e @Harry R. 我们可以使用 ICP 来对齐两个 tsne 吗? 我也遇到了错误,所以我尝试了这个 Python 3 的 ICP 实现,它对我很有效。 github.com/ClayFlannigan/icp 请注意,estimateRigidTransform
现在已被弃用,在 python 绑定中不再可用。以上是关于python上的迭代最近点(ICP)实现的主要内容,如果未能解决你的问题,请参考以下文章
ICP算法(Iterative Closest Point迭代最近点算法)