找到并绘制回归平面到一组点
Posted
技术标签:
【中文标题】找到并绘制回归平面到一组点【英文标题】:Find and draw regression plane to a set of points 【发布时间】:2014-01-09 02:11:35 【问题描述】:我想将平面拟合到一些数据点并绘制它。我目前的代码是这样的:
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
points = [(1.1,2.1,8.1),
(3.2,4.2,8.0),
(5.3,1.3,8.2),
(3.4,2.4,8.3),
(1.5,4.5,8.0)]
xs, ys, zs = zip(*points)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs)
point = np.array([0.0, 0.0, 8.1])
normal = np.array([0.0, 0.0, 1.0])
d = -point.dot(normal)
xx, yy = np.meshgrid([-5,10], [-5,10])
z = (-normal[0] * xx - normal[1] * yy - d) * 1. /normal[2]
ax.plot_surface(xx, yy, z, alpha=0.2, color=[0,1,0])
ax.set_xlim(-10,10)
ax.set_ylim(-10,10)
ax.set_zlim( 0,10)
plt.show()
结果如下:
正如您现在所看到的,我手动创建了平面。我该如何计算呢?我想scipy.optimize.minimize
是可能的。目前,这种错误函数对我来说并不重要。我认为最小二乘(垂直点平面距离)会很好。如果你们中的一个人能告诉我怎么做,那就太棒了。
【问题讨论】:
请参考Best fit plane algorithms why different results了解几种可能的方法 【参考方案1】:哦,我突然想到了这个主意。这很容易。 :-)
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import scipy.optimize
import functools
def plane(x, y, params):
a = params[0]
b = params[1]
c = params[2]
z = a*x + b*y + c
return z
def error(params, points):
result = 0
for (x,y,z) in points:
plane_z = plane(x, y, params)
diff = abs(plane_z - z)
result += diff**2
return result
def cross(a, b):
return [a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0]]
points = [(1.1,2.1,8.1),
(3.2,4.2,8.0),
(5.3,1.3,8.2),
(3.4,2.4,8.3),
(1.5,4.5,8.0)]
fun = functools.partial(error, points=points)
params0 = [0, 0, 0]
res = scipy.optimize.minimize(fun, params0)
a = res.x[0]
b = res.x[1]
c = res.x[2]
xs, ys, zs = zip(*points)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs)
point = np.array([0.0, 0.0, c])
normal = np.array(cross([1,0,a], [0,1,b]))
d = -point.dot(normal)
xx, yy = np.meshgrid([-5,10], [-5,10])
z = (-normal[0] * xx - normal[1] * yy - d) * 1. /normal[2]
ax.plot_surface(xx, yy, z, alpha=0.2, color=[0,1,0])
ax.set_xlim(-10,10)
ax.set_ylim(-10,10)
ax.set_zlim( 0,10)
plt.show()
对不起,不必要地问了。
【讨论】:
【参考方案2】:另一种方法是直接使用最小二乘法。 平面的方程是:ax + by + c = z。所以用你的所有数据设置这样的矩阵:
x_0 y_0 1
A = x_1 y_1 1
...
x_n y_n 1
和
a
x = b
c
和
z_0
B = z_1
...
z_n
换句话说:Ax = B。现在求解x,它们是你的系数。但是因为(我假设)你有超过 3 个点,系统是超定的,所以你需要使用左伪逆。所以答案是:
a
b = (A^T A)^-1 A^T B
c
下面是一些简单的 Python 代码和示例:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET = 5
EXTENTS = 5
NOISE = 5
# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
zs.append(xs[i]*TARGET_X_SLOPE + \
ys[i]*TARGET_y_SLOPE + \
TARGET_OFFSET + np.random.normal(scale=NOISE))
# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')
# do fit
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
print "solution:"
print "%f x + %f y + %f = z" % (fit[0], fit[1], fit[2])
print "errors:"
print errors
print "residual:"
print residual
# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
for c in range(X.shape[1]):
Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
【讨论】:
很好的答案,感谢分享!由于不推荐使用 np.matrix,因此我编辑了代码,使其适用于 np 数组【参考方案3】:感谢@Ben 的分享!由于不推荐使用 np.matrix,因此我编辑了您的代码,使其适用于 np 数组
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import inv
# Pass the function array of points, shape (3, X)
def plane_from_points(points):
# Create this matrix correctly without transposing it later?
A = np.array([
points[0,:],
points[1,:],
np.ones(points.shape[1])
]).T
b = np.array([points[2, :]]).T
# fit = (A.T * A).I * A.T * b
fit = np.dot(np.dot(inv(np.dot(A.T, A)), A.T), b)
# errors = b - np.dot(A, fit)
# residual = np.linalg.norm(errors)
return fit
N_POINTS = 10
TARGET_X_SLOPE = 2
TARGET_y_SLOPE = 3
TARGET_OFFSET = 5
EXTENTS = 5
NOISE = 3
# create random data
xs = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
ys = [np.random.uniform(2*EXTENTS)-EXTENTS for i in range(N_POINTS)]
zs = []
for i in range(N_POINTS):
zs.append(xs[i]*TARGET_X_SLOPE + \
ys[i]*TARGET_y_SLOPE + \
TARGET_OFFSET + np.random.normal(scale=NOISE))
points = np.array([xs, ys, zs])
# plot raw data
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.scatter(xs, ys, zs, color='b')
fit = plane_from_points(points)
# plot plane
xlim = ax.get_xlim()
ylim = ax.get_ylim()
X,Y = np.meshgrid(np.arange(xlim[0], xlim[1]),
np.arange(ylim[0], ylim[1]))
Z = np.zeros(X.shape)
for r in range(X.shape[0]):
for c in range(X.shape[1]):
Z[r,c] = fit[0] * X[r,c] + fit[1] * Y[r,c] + fit[2]
ax.plot_wireframe(X,Y,Z, color='k')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
【讨论】:
以上是关于找到并绘制回归平面到一组点的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 Python 在一组点上绘制多边形(部分向内弯曲)边缘?
找到一个具有最大点数的圆 ((x,y,r));给定二维平面中的一组点(x,y)
将平面拟合到 3D 中的一组点:scipy.optimize.minimize vs scipy.linalg.lstsq