luogu2714 四元组统计 莫比乌斯反演 组合数

Posted headboy2002

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luogu2714 四元组统计 莫比乌斯反演 组合数相关的知识,希望对你有一定的参考价值。

题目大意

给出一段序列,求其中最大公约数为1的四元组的个数。

思路

我们要用到反演、正难则反的思想。对于每一个大于1的数字\(x\),求出最大公约数为\(x\)的四元组的个数\(g(x)\),然后用排列中所有四元组的组合个数减去\(\sum g(x)\)即可。
直接求\(g(x)\)没有什么思路,但是求公约数中存在\(x\)的四元组的个数\(f(x)\)会比较容易。枚举约数中存在x的数列元素的个数\(n\),则有
\[f(x)=C_n^4\]
那么怎么把\(f(x)\)变为\(g(x)\)呢?这要用到莫比乌斯反演。

莫比乌斯反演

莫比乌斯函数

\[ \mu(x)= \begin{cases} 1 &\text{若$x$=1}\0 &\text{若对$x$质因数分解得到的每个质数的次数中存在大于1的}\(-1)^k &\text{$k$为$x$的质因数个数} \end{cases} \]

莫比乌斯反演公式


\[f(x)=\sum_{k=1}^{\lfloor \frac{N}{x}\rfloor}g(kx)\tag{1}\]

\[g(x)=\sum_{k=1}^{\lfloor \frac{N}{x}\rfloor}f(kx)\mu(k)\]

我们发现这道题若把序列中的数字最大值作为\(N\),\(f(x),g(x)\)恰好满足该关系(1)。于是我们跟着公式求\(g(x)\)即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define ll long long

const int MAX_N = 10010, MAX_R = 5, MAX_PRIME_CNT = MAX_N;
ll C[MAX_N][MAX_R];
int Num[MAX_N], Mu[MAX_N];
ll F[MAX_N];

void GetMu(int *mu, int n)
{
    static bool NotPrime[MAX_N];
    static int prime[MAX_PRIME_CNT];
    memset(NotPrime, false, sizeof(NotPrime));
    int primeCnt = 0;
    mu[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        if (!NotPrime[i])
        {
            prime[primeCnt++] = i;
            mu[i] = -1;
        }
        for (int j = 0; j < primeCnt; j++)
        {
            if (i*prime[j] > n)
                break;
            NotPrime[i*prime[j]] = true;
            if (i%prime[j] == 0)
            {
                mu[i*prime[j]] = 0;
                break;
            }
            else
                mu[i*prime[j]] = -mu[i];
        }
    }
}

void GetC(int r, int n)
{
    memset(C, 0, sizeof(C));
    for (int i = 1; i <= n; i++)
    {
        C[i][0] = 1;
        for (int j = 1; j <= min(i, r); j++)
        {
            if (i == j)
                C[i][j] = 1;
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
}

ll Proceed(int maxN, int n)
{
    memset(F, 0, sizeof(F));
    for (int i = 2; i <= maxN; i++)
    {
        int cnt = 0;
        for (int j = 1; j <= maxN / i; j++)
            cnt += Num[i * j];
        F[i] = C[cnt][4];
    }
    ll ans = 0;
    for (int i = 2; i <= maxN; i++)
        for (int j = 1; j <= maxN / i; j++)
            ans += F[i * j] * Mu[j];
    return C[n][4] - ans;
}

int main()
{
    GetMu(Mu, 10000);
    GetC(4, 10000);
    int n, maxN = 0, x;
    while (~scanf("%d", &n))
    {
        memset(Num, 0, sizeof(Num));
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &x);
            Num[x]++;
            maxN = max(maxN, x);
        }
        printf("%lld\n", Proceed(maxN, n));
    }
    return 0;
}

以上是关于luogu2714 四元组统计 莫比乌斯反演 组合数的主要内容,如果未能解决你的问题,请参考以下文章

luogu2658 GCD(莫比乌斯反演/欧拉函数)

Luogu3768简单的数学题(莫比乌斯反演,杜教筛)

[luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

Luogu3455POI2007ZAP-Queries(莫比乌斯反演)

P2257 YY的GCD (莫比乌斯反演)

bzoj 2820 luogu 2257 yy的gcd (莫比乌斯反演)