luogu2658 GCD(莫比乌斯反演/欧拉函数)
Posted oier
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luogu2658 GCD(莫比乌斯反演/欧拉函数)相关的知识,希望对你有一定的参考价值。
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
1<=N<=10^7
(1)莫比乌斯反演法
发现就是YY的GCD,左转YY的GCD粘过来就行
代码太丑,没开O2 TLE5个点
#include <cstdio>
#include <functional>
using namespace std;
const int fuck = 10000000;
int prime[10000010], tot;
bool vis[10000010];
int mu[10000010], sum[10000010];
int main()
{
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= tot; i++)
for (int j = 1; j * prime[i] <= fuck; j++)
sum[j * prime[i]] += mu[j];
for (int i = 1; i <= fuck; i++)
sum[i] += sum[i - 1];
// int t; scanf("%d", &t);
// while (t --> 0)
// {
int n, m;
long long ans = 0; //别忘了初始化。。。
scanf("%d", &n), m = n;
if (n > m) {int t = m; m = n; n = t; }
for (int i = 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
ans += (sum[j] - sum[i - 1]) * (long long)(n / i) * (m / i);
}
printf("%lld
", ans);
// }
return 0;
}
(2)欧拉函数法
对于一个(p)我们发现(sum_{i=1}^nsum_{j=1}^n[gcd(i,j)=p])即为(sum_{i=1}^{n/p}sum_{j=1}^{n/p}[gcd(i,j)=1])
左转SDOI仪仗队那题,发现这个式子就是(2varphi(lfloorfrac n p floor)+1)
线性筛就行
(一个月前的代码
#include <bits/stdc++.h>
using namespace std;
int vis[10000010];
long long phi[10000010];
int prime[1000010], tot, n;
int main()
{
cin >> n;
phi[1] = 1;
for (int i = 2; i <= n; i++)
{
if (vis[i] == 0)
prime[++tot] = i, phi[i] = i - 1;
for (int j = 1; j <= tot && i * prime[j] <= n; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
vis[i] ^= 1;
vis[i] += vis[i - 1];
phi[i] += phi[i - 1];
}
long long ans = 0;
for (int i = 1; i <= tot; i++)
ans += 2 * phi[n / prime[i]] - 1;
cout << ans << endl;
return 0;
}
以上是关于luogu2658 GCD(莫比乌斯反演/欧拉函数)的主要内容,如果未能解决你的问题,请参考以下文章
BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)