极大似然估计与贝叶斯定理

Posted wangdy0707

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了极大似然估计与贝叶斯定理相关的知识,希望对你有一定的参考价值。

文章转载自:https://blog.csdn.net/zengxiantao1994/article/details/72787849

极大似然估计-形象解释看这篇文章:https://www.zhihu.com/question/24124998

贝叶斯定理-形象解释看这篇文章:https://www.zhihu.com/question/19725590/answer/217025594

极大似然估计

        以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:

贝叶斯决策

        首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

技术分享图片

 

        其中:p(w):为先验概率,表示每种类别分布的概率;技术分享图片:类条件概率,表示在某种类别前提下,某事发生的概率;而技术分享图片为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

        我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

        从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

        设:技术分享图片

        由已知可得:

技术分享图片

 

        男性和女性穿凉鞋相互独立,所以技术分享图片

(若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

        由贝叶斯公式算出:技术分享图片

   

问题引出

        但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率技术分享图片和类条件概率(各类的总体分布)技术分享图片都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

        先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

        类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度技术分享图片转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。

重要前提

        上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

        重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。

极大似然估计

        极大似然估计的原理,用一张图片来说明,如下图所示:

技术分享图片

 

        总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

        原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

        由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:

技术分享图片

   似然函数(linkehood function):联合概率密度函数技术分享图片称为相对于技术分享图片的θ的似然函数。

技术分享图片

 

        如果技术分享图片是参数空间中能使似然函数技术分享图片最大的θ值,则技术分享图片应该是“最可能”的参数值,那么技术分享图片就是θ的极大似然估计量。它是样本集的函数,记作:

技术分享图片

 

求解极大似然函数

        ML估计:求使得出现该组样本的概率最大的θ值。

技术分享图片

 

         实际中为了便于分析,定义了对数似然函数:

技术分享图片

技术分享图片

  

        1. 未知参数只有一个(θ为标量)

        在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

技术分享图片

        2.未知参数有多个(θ为向量)

        则θ可表示为具有S个分量的未知向量:

技术分享图片

 

         记梯度算子:

技术分享图片

 

         若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

技术分享图片 

         方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

极大似然估计的例子

        例1:设样本服从正态分布技术分享图片,则似然函数为:

技术分享图片

 

        它的对数:

技术分享图片

 

        求导,得方程组:

 技术分享图片

        联合解得:

技术分享图片

 

        似然方程有唯一解技术分享图片:,而且它一定是最大值点,这是因为当技术分享图片技术分享图片时,非负函数技术分享图片。于是U和技术分享图片的极大似然估计为技术分享图片

 

        例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

技术分享图片

 

        对样本技术分享图片

技术分享图片

 

        很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于技术分享图片,否则,L(a,b)=0。类似地a不能大过技术分享图片,因此,a和b的极大似然估计:

 技术分享图片

总结

        求最大似然估计量技术分享图片的一般步骤:

        (1)写出似然函数;

        (2)对似然函数取对数,并整理;

        (3)求导数;

        (4)解似然方程。

        最大似然估计的特点:

        1.比其他估计方法更加简单;

        2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

        3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

 

以上是关于极大似然估计与贝叶斯定理的主要内容,如果未能解决你的问题,请参考以下文章

机器学习:贝叶斯分类器

class-朴素贝叶斯NaiveBayes

机器学习2-极大似然估计与贝叶斯估计

频率学派 极大似然估计MLE,贝叶斯学派 最大后验估计MAP 2021-05-11

机器学习——朴素贝叶斯算法

朴素贝叶斯与逻辑回归