BZOJ1228: [SDOI2009]E&D

Posted 自为

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ1228: [SDOI2009]E&D相关的知识,希望对你有一定的参考价值。

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 983  Solved: 583
[
Submit][Status][Discuss]

Description

小E 与小W 进行一项名为“E&D”游戏。游戏的规则如下:桌子上有2n 堆石子,编号为1..2n。其中,为了方便起见,我们将第2k-1 堆与第2k 堆(1 ≤ k ≤ n)视为同一组。第i堆的石子个数用一个正整数Si表示。一次分割操作指的是,从桌子上任取一堆石子,将其移走。然后分割它同一组的另一堆石子,从中取出若干个石子放在被移走的位置,组成新的一堆。操作完成后,所有堆的石子数必须保证大于0。显然,被分割的一堆的石子数至少要为2。两个人轮流进行分割操作。如果轮到某人进行操作时,所有堆的石子数均为1,则此时没有石子可以操作,判此人输掉比赛。小E 进行第一次分割。他想知道,是否存在某种策略使得他一定能战胜小W。因此,他求助于小F,也就是你,请你告诉他是否存在必胜策略。例如,假设初始时桌子上有4 堆石子,数量分别为1,2,3,1。小E可以选择移走第1堆,然后将第2堆分割(只能分出1 个石子)。接下来,小W 只能选择移走第4 堆,然后将第3 堆分割为1 和2。最后轮到小E,他只能移走后两堆中数量为1 的一堆,将另一堆分割为1 和1。这样,轮到小W 时,所有堆的数量均为1,则他输掉了比赛。故小E 存在必胜策略。

Input

的第一行是一个正整数T(T ≤ 20),表示测试数据数量。接下来有T组数据。对于每组数据,第一行是一个正整数N,表示桌子上共有N堆石子。其中,输入数据保证N是偶数。第二行有N个正整数S1..SN,分别表示每一堆的石子数。

Output

包含T 行。对于每组数据,如果小E 必胜,则输出一行”YES”,否则输出”NO”。

Sample Input

2
4
1 2 3 1
6
1 1 1 1 1 1

Sample Output

YES
NO
【数据规模和约定】
对于20%的数据,N = 2;
对于另外20%的数据,N ≤ 4,Si ≤ 50;
对于100%的数据,N ≤ 2×10^4,Si ≤ 2×10^9。

HINT

 

Source

 

这题貌似没啥好方法

就是打表SG,也算是一种套路吧

结论:求出两个数异或起来的最低为0的位置,异或起来即为SG值

 

#include<cstdio>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<15,stdin),p1==p2)?EOF:*p1++)
char buf[1<<15],*p1=buf,*p2=buf;
inline int read() {
    char c=getchar();int x=0,f=1;
    while(c<0||c>9){if(c==-)f=-1;c=getchar();}
    while(c>=0&&c<=9){x=x*10+c-0;c=getchar();}
    return x*f;
}
int main() {
    int T = read();
    while(T--) {
        int SG = 0;
        int N = read(), x, y;N >>= 1;
        for(register int i = 1; i <= N; i++) {
            x = read(), y = read();
            int ans = (x - 1) | (y - 1);
            for(register int i = 0; ; i++)
                if( !(ans & (1 << i)) )
                    {SG ^= i;break;}
        }
        puts(SG?"YES":"NO");
    }
    return 0;
}

 

以上是关于BZOJ1228: [SDOI2009]E&D的主要内容,如果未能解决你的问题,请参考以下文章

bzoj 1228 [SDOI2009]E&D

bzoj1228 [SDOI2009]E&D

bzoj 1228 [SDOI2009]E&D 博弈论

BZOJ 1228 E&G(sg函数+找规律)

BZOJ 1877: [SDOI2009]晨跑

BZOJ 1875SDOI 2009HH去散步