BZOJ4561:圆的异或并(扫描线+set||splay||线段树)

Posted ---学习ing---

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ4561:圆的异或并(扫描线+set||splay||线段树)相关的知识,希望对你有一定的参考价值。

   在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面

   积并。异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆内则不考虑。
Input

   第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的

圆。保证|x|,|y|,≤10^8,r>0,N<=200000
Output

   仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。

Sample Input
  2
  0 0 1
  0 0 2

Sample Output

  3

 

思路:扫描线,有很多这样的题,思路就是分成上下两半圆,然后用数据结构。 

           前提是不相交。然后可以求出包含关系。

具体:把一个圆分为上下两个半圆,然后每次扫描线扫到一个圆X(左边),去找这个圆的“上面的第一个半圆Cir”,若Cir是上半圆的话,则X被其包含,否则无。                     然后把圆X加入数据结构中。

           扫描到一个圆X(右边),则把圆X从数据结构中删除。

对于当前扫描线里的圆(保存在数据结构里的那些),排序是根据直线与圆的交点的纵坐标排序得到:

            下面左图,B上面第一个圆是A,因为3上面第一个点是2。而2代表下半圆,说明无圆包含B。

            下图右图,B上面第一个圆是A,因为3上面第一个点是1。而1代表上半圆,说明第一个包含B的是A。(可能A还被其他圆包含,即B<A<...)

简单证明划分圆来解决的可行性:

            由于圆之间不相交,所以我们用平行Y轴是直线去扫描的时候(从左向右),直线与圆产生一些交点。

           易得:这些圆中,一个圆与直线的两个交点与其他圆的两个交点不交叉。即一对交点“属于哪个圆”这个属性“相离”或者“包含”,不会“交叉”,如下:

             如左图:A圆与直线交点1,2,B圆与直线交点3,4。二圆相离,所以(1,2),(3,4)。

             如右图:A圆与直线交点1,2,B圆与直线交点3,4。二圆包含。所以(1,(3,4)2)。

             不会出现下图中的1,3,24

 

             因此,一个圆X被圆Y包含,要求最内层的Y,只需要在这条线上找X与直线的交点a上面的第一个“下半圆交点”即可。

 

 -----------------------上面是简单证明,下面是整正题--------------------------

 

数据结构用于查找大于等于a的数,可以是set,线段树,判平衡树等。

这里是练习平衡树,但是为了保险,先写了下set,不然直接写splay找错很麻烦。

待续。。。。

#include<set>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long 
const int maxn=200010;
struct cir{
     ll x,y,r;
     cir(){}
     cir(ll xx,ll yy,ll rr):x(xx),y(yy),r(rr){}
}c[maxn];
struct ins{
     int x,opt,id;
     ins(){}
     ins(int xx,int oo,int ii):x(xx),opt(oo),id(ii){}
}w[maxn<<1];=
ll Lx,sig[maxn];  set<ins>s;
ll cal(ll x) { return x*x; }
bool cmp(ins a,ins b){ return a.x<b.x; }
bool operator <(ins a,ins b){
    
    double y1=c[a.id].y+a.opt*sqrt(cal(c[a.id].r)-cal(c[a.id].x-Lx));
    double y2=c[b.id].y+b.opt*sqrt(cal(c[b.id].r)-cal(c[b.id].x-Lx));
    if(y1==y2) return a.opt<b.opt; //当一个圆的左顶点刚好在LX线上? 
    return y1<y2; 
}
int main()
{
    int N; scanf("%d",&N);
    for(int i=1;i<=N;i++){
        scanf("%lld%lld%lld",&c[i].x,&c[i].y,&c[i].r);
        w[(i<<1)-1]=ins(c[i].x-c[i].r,1,i);
        w[i<<1]=ins(c[i].x+c[i].r,-1,i);
    }
    sort(w+1,w+(N<<1)+1,cmp);
    for(int i=1;i<=(N<<1);i++){
        Lx=w[i].x; 
        if(w[i].opt==1){//左,加圆 
            
            set<ins>::iterator it;
            it=s.upper_bound(ins(0,1,w[i].id));
            if(it==s.end()) sig[w[i].id]=1;
            else{
                if((*it).opt==-1) sig[w[i].id]=sig[(*it).id];
                else sig[w[i].id]=-sig[(*it).id];
            }
            s.insert(ins(0,1,w[i].id));
            s.insert(ins(0,-1,w[i].id));
        }
        else {
            s.erase(ins(0,1,w[i].id));
            s.erase(ins(0,-1,w[i].id));
        }
    }
    ll ans=0;
    for(int i=1;i<=N;i++)  ans+=sig[i]*cal(c[i].r);
    printf("%lld\\n",ans); 
    return 0;
}

 

以上是关于BZOJ4561:圆的异或并(扫描线+set||splay||线段树)的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ4561[JLoi2016]圆的异或并 扫描线

Bzoj4561 [JLoi2016]圆的异或并

计数方法(扫描线):JLOI 2016 圆的异或并

bzoj4671: 异或图

BZOJ4671 异或图

bzoj 4671: 异或图