题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入输出格式
输入格式:
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
输出格式:
共n行,每行一个整数表示满足要求的数对(x,y)的个数
输入输出样例
说明
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
莫比乌斯反演
首先你要会求$\sum ^{n}_{i=1}\sum ^{m}_{i=1}\left[ \gcd \left( i,j\right) = 1\right]$
然后不难发现这题可以容斥处理
假设$work(i,j)=\sum ^{n}_{i=1}\sum ^{m}_{i=1}\left[ \gcd \left( i,j\right) = 1\right]$
那么$ans=work(b,d)-work(a-1,d)-work(c-1,b)+work(a-1,c-1)$
// luogu-judger-enable-o2 #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const int MAXN=1e6+10; inline int read() { char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } int N,a,b,c,d,k,ans; int vis[MAXN],prime[MAXN],mu[MAXN],tot=0; void GetMu() { vis[1]=1;mu[1]=1; for(int i=2;i<=N;i++) { if(!vis[i]) prime[++tot]=i,mu[i]=-1; for(int j=1;j<=tot&&i*prime[j]<=N;j++) { vis[i*prime[j]]=1; if(i%prime[j]==0) {mu[i*prime[j]]=0;break;} else mu[i*prime[j]]=-mu[i]; } } for(int i=1;i<=N;i++) mu[i]+=mu[i-1]; } int work(int n,int m) { int limit=min(n/k,m/k),ans=0; for(int i=1,nxt;i<=limit;i=nxt+1) { nxt=min(n/(n/i),m/(m/i)); ans+=(mu[nxt]-mu[i-1])*(n/(k*i))*(m/(k*i)); } return ans; } main() { N=1e5; GetMu(); int QWQ=read(); while(QWQ--) { a=read(),b=read(),c=read(),d=read(),k=read(); ans=work(b,d)-work(a-1,d)-work(c-1,b)+work(a-1,c-1); printf("%d\n",ans); } return 0; }