hiho_1050_树中的最长路

Posted 农民伯伯-Coding

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hiho_1050_树中的最长路相关的知识,希望对你有一定的参考价值。

题目大意

    给出一棵树,其中每两个节点都可以形成一个路径(要求路径中的边只能走一次),求出所有路径中的长度最大值。

分析

    树形结构,很容易想到递归,但为了节省时间,要考虑保存中间状态。于是,考虑使用记忆化搜索(也就是树形动态规划)。 
保存状态 dp[i][2],其中dp[i][0]表示以i为根的子树中路径的两个端点均不位于i的路径的最长值,dp[i][1]表示以i为根的子树中有一个端点位于i的路径的最长值。然后进行状态推演, 
dp[root][1] = 1 + max(dp[child][1]); 
dp[root][0] = max(max(max0, 2 + max1 + max2);(root的子节点数大于1) 
dp[root][0] = 1 + max1;(root的子节点数等于1) 
max0表示i的所有子节点中的最大的dp[c][0], max1表示i的所有字节点中最大的dp[c][1], max2表示i的所有子节点中第二大的dp[c][1].

    由于树的任何一个节点均可以作为根节点,因此dfs时候,选择1即可。

实现

#pragma once
#pragma execution_character_set("utf-8")
// 本文件为utf-8 编码格式

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define N 100005
int dp[N][2];
struct Edge{
	int to;
	int next;
};
Edge gEdges[2*N];
int gHead[N];
bool gVisited[N];
int gEdgeIndex;
void InsertEdge(int u, int v){
	int e = gEdgeIndex++;
	gEdges[e].to = v;
	gEdges[e].next = gHead[u];
	gHead[u] = e;

	e = gEdgeIndex++;
	gEdges[e].to = u;
	gEdges[e].next = gHead[v];
	gHead[v] = e;
}


pair<int, int> dfs(int root){
	if (dp[root][0] != -1 && dp[root][1] != -1){
		return pair<int, int>(dp[root][0], dp[root][1]);
	}
	gVisited[root] = true;
	int e = gHead[root];
	int max1 = 0, max2 = 0, max = 0, child_num = 0;
	for (; e != -1; e = gEdges[e].next){
		int v = gEdges[e].to;
		if (!gVisited[v]){
			pair<int, int> result = dfs(v);
			max = max > result.first ? max : result.first;
			if (max1 >= result.second){
				max2 = max2 > result.second ? max2 : result.second;
			}
			else{//求一组数中的第一大和第二大的数!!! 注意次序
				/*
				//这样做,在处理第一个result的时候, max1和max2赋值为同一个...error
				max1 = result.second;
				max2 = max1;

				//这样做,考虑到第一个值的处理,但是 对max1和max2的更新次序错了。 仔细考虑...
				max1 = result.second;
				if(max1 != 0)
					max2 = max1;
				*/
				if (max1 != 0)
					max2 = max1;
				max1 = result.second;
			}
			child_num++;
		}
	}
	if (child_num == 0)
		dp[root][0] = dp[root][1] = 0;
	else if (child_num == 1){
		dp[root][0] = max;
		dp[root][1] = 1 + max1;
	}
	else{
		dp[root][1] = 1 + max1;
		dp[root][0] = max > (2 + max1 + max2) ? max : (2 + max1 + max2);		
	}
	
	return pair<int, int>(dp[root][0], dp[root][1]);
}

void Init(){
	memset(gVisited, false, sizeof(gVisited));
	memset(gHead, -1, sizeof(gHead));
	gEdgeIndex = 0;
	memset(gEdges, -1, sizeof(gEdges));
	memset(dp, -1, sizeof(dp));
}
int main(){
	int n, u, v;
	scanf("%d", &n);
	Init();
	for (int i = 1; i < n; i++){
		scanf("%d %d", &u, &v);
		InsertEdge(u, v);
	}
	pair<int, int> result = dfs(1);
	printf("%d\n", result.first>result.second ? result.first : result.second);
	return 0;
}

 

以上是关于hiho_1050_树中的最长路的主要内容,如果未能解决你的问题,请参考以下文章

hiho 1050

hiho1050(树的直径)

hihoCoder week11 树中的最长路

题解报告:hihoCoder #1050 : 树中的最长路

HihoCoder1050 树中的最长路 树形DP第三题(找不到对象)

hiho_1067_最近公共祖先2