看别的blog好像我用了比较麻烦的方法……
(以下的n都--过
\[
c[i]=\sum_{j=i}^{n}a[i]*b[j-i]
\]
设j=i+j
\[
c[i]=\sum_{j=0}^{n-i}a[i+j]*b[i+j-i]
\]
\[
c[i]=\sum_{j=0}^{n-i}a[i+j]*b[j]
\]
再设j=n-i-j
\[
c[i]=\sum_{n-i-j}^{n-i}a[n-i-j+i]b[n-i-j]
\]
\[
n-i-j \geq 0 \Rightarrow j \leq n-i
\]
\[
n-i-j<=n-i \Rightarrow j \geq 0
\]
\[
c[i]=\sum_{j=0}^{n-i}a[n-j]b[n-i-j]
\]
然后把n-i和i换一下
\[
c[n-i]=\sum_{j=0}^{i}a[n-j]b[i-j]
\]
至此,只有a看起来不是卷积,于是可以在读入的时候就把a数组翻转(读入b[i],a[n-i]即可)
然后注意c也是反转的,输出的时候倒着输出
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int mod=998244353,G=3,N=5e6;
int lm,bt,n,re[N],ans[N],a[N],b[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>‘9‘||p<‘0‘)
{
if(p==‘-‘)
f=-1;
p=getchar();
}
while(p>=‘0‘&&p<=‘9‘)
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(G,(mod-1)/(i*2));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[k+j];
y=1ll*w*a[k+j+i]%mod;
a[k+j]=((x+y)%mod+mod)%mod;
a[k+j+i]=((x-y)%mod+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int inv=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*inv%mod;
}
}
void ntt()
{
bt=1;
for(;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
for(int i=0;i<=lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*b[i]%mod;
dft(a,-1);
}
int main()
{
n=read();
n--;
for(int i=0;i<=n;i++)
a[n-i]=read(),b[i]=read();
ntt();
for(int i=n;i>=0;i--)
printf("%d\n",a[i]);
return 0;
}