defaultdict(<function __main__.train.<locals>.<lambda>>,
{\'counterorders\': 2,
\'ureters\': 3,
\'displeasure\': 9,
\'omitted\': 10,
\'sparrow\': 5,
\'tubercle\': 66,
\'curse\': 7,
\'pauncefote\': 2,
\'updated\': 5,
\'gloomier\': 4,
\'foremost\': 17,
\'wabash\': 2,
\'anarchists\': 4,
\'intermediacy\': 2,
\'threadbare\': 2,
\'endeavouring\': 9,
\'freeholders\': 11,
\'irreproachably\': 3,
\'ignominious\': 3,
\'illuminated\': 9,
\'galitsyn\': 2,
\'struthers\': 3,
\'shuya\': 2,
\'futile\': 16,
\'each\': 412,
\'district\': 38,
\'acquiesced\': 2,
\'staircase\': 14,
\'shamelessly\': 2,
\'doubter\': 2,
\'plumage\': 3,
\'worming\': 2,
\'militiamen\': 30,
\'tombstones\': 2,
\'presupposable\': 2,
\'notable\': 6,
\'louise\': 5,
\'overtook\': 17,
\'abstraction\': 8,
\'displeased\': 20,
\'ranchmen\': 2,
\'instal\': 2,
\'kashmir\': 3,
\'nay\': 4,
\'wired\': 5,
\'pencil\': 11,
\'mustache\': 46,
\'breast\': 87,
\'dioxide\': 9,
\'disappointments\': 4,
\'impassive\': 6,
\'though\': 651,
\'floridas\': 7,
\'torban\': 2,
\'combine\': 11,
\'yawning\': 7,
\'homeless\': 4,
\'cinema\': 2,
\'subjects\': 68,
\'rib\': 9,
\'bin\': 3,
\'cylinders\': 18,
\'bijou\': 2,
\'acted\': 38,
\'accepted\': 88,
\'attainment\': 11,
\'mustered\': 8,
\'audacious\': 2,
\'respectable\': 15,
\'bilateral\': 10,
\'coraco\': 2,
\'stuffs\': 2,
\'reheat\': 2,
\'roberts\': 3,
\'trenton\': 6,
\'sharpening\': 5,
\'component\': 6,
\'pat\': 4,
\'animation\': 32,
\'coincidently\': 5,
\'cy\': 2,
\'smoker\': 2,
\'manes\': 3,
\'adelaide\': 2,
\'prayer\': 43,
\'industries\': 65,
\'advantageously\': 5,
\'dissolute\': 3,
\'tendon\': 130,
\'barton\': 2,
\'ablest\': 2,
\'episode\': 12,
\'barges\': 3,
\'sipping\': 4,
\'inoperative\': 2,
\'soap\': 8,
\'padlocks\': 2,
\'vagaries\': 2,
\'potemkins\': 3,
\'blackguard\': 5,
\'smashed\': 11,
\'bursitis\': 17,
\'goes\': 61,
\'prefix\': 3,
\'shops\': 23,
\'basketful\': 2,
\'stepfather\': 22,
\'veil\': 17,
\'adorers\': 2,
\'overhauled\': 6,
\'liquors\': 3,
\'bottoms\': 3,
\'plastun\': 2,
\'surest\': 4,
\'carlton\': 5,
\'friedland\': 6,
\'alice\': 14,
\'unhealthy\': 15,
\'cannula\': 9,
\'eleven\': 22,
\'persuasions\': 3,
\'cawolla\': 2,
\'elephants\': 2,
\'mechanicks\': 2,
\'kitten\': 8,
\'promotes\': 2,
\'venae\': 2,
\'matt\': 2,
\'private\': 94,
\'essential\': 93,
\'creating\': 25,
\'exclaiming\': 5,
\'extent\': 100,
\'oxidising\': 2,
\'dessicans\': 3,
\'uplands\': 4,
\'tops\': 4,
\'jerky\': 6,
\'irregularity\': 6,
\'recruitment\': 3,
\'fringes\': 17,
\'shopkeepers\': 7,
\'tendencies\': 16,
\'unconditionally\': 3,
\'brandy\': 16,
\'camberwell\': 3,
\'statue\': 9,
\'metatarsal\': 9,
\'measurement\': 3,
\'enclosures\': 2,
\'suspecting\': 4,
\'noses\': 7,
\'standard\': 55,
\'inspection\': 19,
\'enterprising\': 6,
\'freak\': 4,
\'liberating\': 2,
\'ordeal\': 3,
\'pancras\': 2,
\'luxury\': 9,
\'livery\': 3,
\'anconeus\': 2,
\'polypus\': 4,
\'leapt\': 3,
\'liberally\': 2,
\'finish\': 50,
\'previously\': 56,
\'mccarthy\': 38,
\'mallet\': 6,
\'bluestocking\': 3,
\'conveyance\': 8,
\'transformer\': 2,
\'compel\': 10,
\'blasphemies\': 3,
\'suggest\': 25,
\'shares\': 4,
\'dishonoured\': 4,
\'hen\': 7,
\'vols\': 28,
\'narcotisation\': 2,
\'speranski\': 80,
\'cherished\': 15,
\'overcoat\': 27,
\'malbrook\': 2,
\'nephroma\': 2,
\'habeus\': 2,
\'coward\': 9,
\'widower\': 5,
\'extremely\': 52,
\'resembling\': 53,
\'understood\': 223,
\'impetus\': 10,
\'actinomyces\': 10,
\'eosinophile\': 4,
\'pronounce\': 10,
\'arrangements\': 30,
\'inevitably\': 33,
\'hochgeboren\': 2,
\'crusted\': 3,
\'weeks\': 118,
\'slightest\': 26,
\'fords\': 2,
\'stimulatingly\': 2,
\'economically\': 3,
\'thrice\': 9,
\'peg\': 5,
\'adventurous\': 4,
\'mountainous\': 3,
\'potch\': 2,
\'adults\': 27,
\'kindled\': 11,
\'have\': 3494,
\'sedate\': 3,
\'democrats\': 94,
\'vaginitis\': 2,
\'foo\': 2,
\'headgear\': 2,
\'gape\': 8,
\'reassigned\': 2,
\'incompletely\': 2,
\'pharmacopoeial\': 2,
\'feelings\': 79,
\'phone\': 3,
\'anger\': 60,
\'improvisations\': 2,
\'dethrone\': 2,
\'toothed\': 2,
\'sweetish\': 2,
\'tack\': 4,
\'unwinding\': 3,
\'pediculosis\': 2,
\'overfed\': 2,
\'rabble\': 8,
\'opsonins\': 4,
\'ver\': 3,
\'postures\': 3,
\'entertainment\': 8,
\'unkind\': 5,
\'lightest\': 3,
\'undergone\': 10,
\'persons\': 120,
以上是关于机器学习算法整理— 贝叶斯算法_拼写纠正实例_垃圾邮件过滤实例的主要内容,如果未能解决你的问题,请参考以下文章
机器学习贝叶斯算法详解 + 公式推导 + 垃圾邮件过滤实战 + Python代码实现
学习朴素贝叶斯分类实例-单词纠正问题
朴素贝叶斯分类实例-单词纠正问题
人工智能机器学习及与智能数据处理Python使用朴素贝叶斯算法对垃圾短信数据集进行分类
《机器学习实战》笔记——朴素贝叶斯
机器学习_贝叶斯算法