题目:
Given two strings s1, s2
, find the lowest ASCII sum of deleted characters to make two strings equal.
Example 1:
Input: s1 = "sea", s2 = "eat" Output: 231 Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum. Deleting "t" from "eat" adds 116 to the sum. At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.
Example 2:
Input: s1 = "delete", s2 = "leet" Output: 403 Explanation: Deleting "dee" from "delete" to turn the string into "let", adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum. At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403. If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.
Note:
0 < s1.length, s2.length <= 1000
.- All elements of each string will have an ASCII value in
[97, 122]
.
思路:
这是一道典型的动态规划题目,建立二维数组dp,其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符要变相等所需要删除的字符的最小ASCII码。
首先对dp进行初始化,当一个字符串为空时,另一个字符串需要删除全部的字符串才能保证两个字符串相等。
for (int i = 1; i <= (signed) s1.length(); i++) { dp[i][0] = dp[i - 1][0] + (int) s1[i - 1]; } for (int i = 1; i <= (signed) s2.length(); i++) dp[0][i] = dp[0][i - 1] + (int) s2[i - 1];
对于dp[i][j],一共有3三种方法到达dp[i][j]
当s1[i-1] == s2[j-1]时,不需要删除s1[i-1]和s2[j-1]就可以保证两个字符串相等,此时dp[i][j] = dp[i-1][j-1]
当s1[i-1] != s2[j-1]时,dp[i][j]可以等于dp[i-1][j]+s1[i-1],也可以等于dp[i][j-1]+s2[j-1]。
dp[i-1][j]+s1[i-1]表示由于从dp[i-1][j]到dp[i][j],增加了字符s1[i-1],s2的字符没有变。想要相同,就必须删除s1[i-1]。
dp[i][j-1]+s2[j-1]表示由于从dp[i][j-1]到dp[i][j],增加了字符s2[j-1],s1的字符没有变。想要相同,就必须删除s2[j-1]。
代码:
1 #include<iostream> 2 #include<algorithm> 3 #include<string> 4 #include<vector> 5 using namespace std; 6 class Solution { 7 public: 8 int minimumDeleteSum(string s1, string s2) { 9 //dp[i][j]代表s1的前i个字符与s2的前j个字符相等所需要删除的最小ascii码 10 int dp[s1.length() + 1][s2.length() + 1] = { 0 }; 11 //初始化 12 for (int i = 1; i <= (signed) s1.length(); i++) { 13 dp[i][0] = dp[i - 1][0] + (int) s1[i - 1]; 14 } 15 for (int i = 1; i <= (signed) s2.length(); i++) 16 dp[0][i] = dp[0][i - 1] + (int) s2[i - 1]; 17 18 for (int i = 1; i <= (signed) s1.length(); i++) { 19 for (int j = 1; j <= (signed) s2.length(); j++) { 20 //字符相等,不需要删除元素 21 if (s1[i - 1] == s2[j - 1]) 22 dp[i][j] = dp[i - 1][j - 1]; 23 else { 26 dp[i][j] = min(dp[i - 1][j] + (int) s1[i - 1], 27 dp[i][j - 1] + (int) s2[j - 1]); 28 } 29 cout << dp[i][j] << " "; 30 } 31 } 32 cout << endl; 33 return dp[s1.length()][s2.length()]; 34 } 35 };
举例:
以sea和eat为例。
当i=1,j=1时,dp[1][1] = min(dp[0][1]+s1[0],dp[1][0]+s2[0]) = e+s = 216
dp[0][1]+s1[0]表示eat已经删除了e,sea需要删除s。
dp[1][0]+s2[0]表示sea已经删除了s,eat需要删除e。
当i=1,j=2时,dp[1][2] = min(dp[0][2]+s2[0],dp[1][1]+s2[1]) = min(ea+s,se+a) = a+e+s = 313
dp[0][2]+s2[0]表示eat已经删除了ea,sea需要删除s。
dp[1][1]+s2[1]表示sea已经删除了s,eat已经删除了e,需要删除a。
当i=1,j=3时,dp[1][3] = min(dp[0][3]+s1[0],dp[1][2]+s2[2]) = min(eat+s,s+ea+t) = a+e+s+t = 429
dp[0][3]+s1[0]表示eat已经删了eat,sea需要删除s。
dp[1][2]+s2[2]表示sea已经删除了s,eat已经删除了ea,需要删除t。
当i=2,j=1时,dp[2][1] = dp[1][0] = 115
由于s1[1]与s2[0]相同,只需要删除sea中的s。
当i = 2,j = 2时,dp[2][2] = min(dp[1][2]+s1[1],dp[2][1]+s2[1]) = a+s = 212
dp[1][2]+s1[1]表示sea已经删除了s,eat已经删除了ea,sea还需要删除e。
dp[2][1]+s2[1]表示sea已经删除了s,eat还需要删除a。
当i=2,j=3时,dp[2][3] = min(dp[1][3]+s1[1],dp[2][2]+s2[2]) = a+s+t = 328
dp[1][3]+s1[1]表示sea已经删除了s,eat已经删除了eat,sea还需要删除e。
dp[2][2]+s2[2]表示sea已经删除了s,eat已经删除了a,eat还需要删除t。
当i=3,j=1时,dp[3][1] = min(dp[2][1]+s1[2],dp[3][0]+s2[0]) = s+a = 212
dp[2][1]+s1[2]表示sea已经删除了s,sea还需要删除a。
dp[3][0]+s2[0]表示sea已经删除了sea,eat还需要删除a。
当i=3,j=2时,dp[3][2] = dp[2][1] = 115
当i=3,j=3时,dp[3][3] = min(dp[2][3]+s1[2],dp[3][2]+s2[2]) = s + t = 231
dp[3][2]+s2[2]表示sea已经删除了s,eat还需要删除t。