题目
题目背景
狂野飙车是小 L 最喜欢的游戏。与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略。
题目描述
小 L 计划进行nn 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏。
小 L 的赛车有三辆,分别用大写字母A、B、C表示。地图一共有四种,分别用小写字母x、a、b、c表示。其中,赛车A不适合在地图a上使用,赛车B不适合在地图b上使用,赛车C不适合在地图c上使用,而地图x则适合所有赛车参加。适合所有赛车参加的地图并不多见,最多只会有d张。
nn 场游戏的地图可以用一个小写字母组成的字符串描述。例如:S=xaabxcbc表示小 L 计划进行88 场游戏,其中第11 场和第55 场的地图类型是x,适合所有赛车,第22 场和第33 场的地图是a,不适合赛车A,第44 场和第77 场的地图是b,不适合赛车B,第66 场和第88 场的地图是c,不适合赛车C。
小 L 对游戏有一些特殊的要求,这些要求可以用四元组 (i, h_i, j, h_j)(i,h
i
,j,h
j
) 来描述,表示若在第ii 场使用型号为h_ih
i
的车子,则第jj 场游戏要使用型号为h_jh
j
的车子。
你能帮小 L 选择每场游戏使用的赛车吗?如果有多种方案,输出任意一种方案。如果无解,输出 “-1’’(不含双引号)。
输入格式
输入第一行包含两个非负整数n, dn,d 。
输入第二行为一个字符串SS 。n, d, Sn,d,S 的含义见题目描述,其中SS 包含nn 个字符,且其中恰好dd 个为小写字母xx 。
输入第三行为一个正整数mm ,表示有mm 条用车规则。接下来mm 行,每行包含一个四元组i, h_i, j, h_ji,h
i
,j,h
j
,其中i, ji,j 为整数,h_i, h_jh
i
,h
j
为字符a、b或c,含义见题目描述。
输出格式
输出一行。
若无解输出 “-1’’(不含双引号)。
若有解,则包含一个长度为nn 的仅包含大写字母A、B、C的字符串,表示小 L 在这nn 场游戏中如何安排赛车的使用。如果存在多组解,输出其中任意一组即可。
输入样例
3 1
xcc
1
1 A 2 B
输出样例
ABA
提示
【样例1解释】
小 L 计划进行33 场游戏,其中第11 场的地图类型是x,适合所有赛车,第22 场和第33 场的地图是c,不适合赛车C。
小 L 希望:若第11 场游戏使用赛车A,则第22 场游戏使用赛车B。那么为这33 场游戏分别安排赛车A、B、A可以满足所有条件。若依次为33 场游戏安排赛车为BBB或BAA时,也可以满足所有条件,也被视为正确答案。但依次安排赛车为AAB或ABC时,因为不能满足所有条件,所以不被视为正确答案。
题解
其实是比较裸的一道2-sat,主要思维难点在于处理"x"
我们先这样想,如果没有x,会是怎样?
每场比赛不能用三种车中以一种,就只有两种选择,选且只选一个
每场比赛之间会有影响
这就可以2-sat建模了
每场比赛的两种车分别作为两个对立的点
对于m个限制:
①如果\\(h_i\\)本身就是\\(i\\)不能使用的车,\\(i\\)肯定不会选,直接忽视
②若\\(h_j\\)是\\(j\\)不能选的车,那么\\(i\\)就不能选\\(h_i\\),由\\(h_i\\)对立点\\(h_i\'\\)连有向边
③否则\\(h_i\\)连向\\(h_j\\),\\(h_j\'\\)连向\\(h_i\'\\)
跑tarjan缩点判断即可,输出方案按拓扑逆序【其实就是Scc编号正序】
撒花~~
等等......
好像还忘了x
题目中x最多为8,可以直接枚举所有x的限制
但\\(3^d\\)会T
我们只枚举x为a或者b,这样子每个x点三种车都有机会选到,如果这样情况下仍然无解,那么肯定就无解了
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define cls(s) memset(s,0,sizeof(s))
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<\' \'; puts("");
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == \'-\') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - \'0\'; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;}
const char alpha[] = {"abc"};
char s[maxn],P[maxn],A[maxn],B[maxn];
int pos[20],n,d,m,p1[maxn],p2[maxn];
int Scc[maxn],dfn[maxn],low[maxn],st[maxn],top,cnt,scci;
inline int id(int u,char c){
if (c == \'a\') return u;
if (c == \'b\' && P[u] == \'a\') return u;
return u + n;
}
inline char Get(int u,int v){
if (P[u] == \'a\') return v ? \'B\' : \'C\';
if (P[u] == \'b\') return v ? \'A\' : \'C\';
return v ? \'A\' : \'B\';
}
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u;
Redge(u){
if (!dfn[to = ed[k].to]){
dfs(to);
low[u] = min(low[u],low[to]);
}else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
}
if (dfn[u] == low[u]){
scci++;
do{
Scc[st[top]] = scci;
}while (st[top--] != u);
}
}
bool solve(){
for (int i = 1; i <= (n << 1); i++)
h[i] = Scc[i] = dfn[i] = low[i] = 0;
top = cnt = scci = 0; ne = 1;
for (int i = 1; i <= m; i++){
int a = p1[i],b = p2[i];
int x = id(a,A[i]),y = id(b,B[i]);
int x1 = x > n ? x - n : x + n,y1 = y > n ? y - n : y + n;
if (A[i] == P[a]) continue;
if (B[i] == P[b]) build(x,x1);
else build(x,y),build(y1,x1);
}
for (int i = 1; i <= (n << 1); i++) if (!dfn[i]) dfs(i);
for (int i = 1; i <= n; i++) if (Scc[i] == Scc[i + n]) return false;
/*puts("");
for (int i = 1; i <= (n << 1); i++) printf("%d:%d\\n",i,Scc[i]); puts("");*/
for (int i = 1; i <= n; i++) putchar(Get(i,Scc[i] < Scc[i + n]));
return true;
}
bool Dfs(int u){
if (u > d) return solve();
for (int i = 0; i < 2; i++){
P[pos[u]] = alpha[i];
if (Dfs(u + 1)) return true;
}
return false;
}
int main(){
n = read(); d = read(); d = 0;
scanf("%s",s + 1);
for (int i = 1; i <= n; i++)
if (s[i] == \'x\') pos[++d] = i;
else P[i] = s[i];
m = read();
for (int i = 1; i <= m; i++){
scanf("%d %c %d %c",&p1[i],&A[i],&p2[i],&B[i]);
A[i] += \'a\' - \'A\'; B[i] += \'a\' - \'A\';
}
if (!Dfs(1)) puts("-1");
return 0;
}