latex tutorial
z = \frac{x}{y}
\[ z = \frac{x}{y} \]
C_1 \quad= \quad c_2 + c_4^3
\[ C_1 \quad= \quad c_2 + c_4^3 \]
$$
y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$
$$
y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2}
$$
\[ y = \sqrt {x_1^2 + x_2^2 + x_3^2 + x_4^2} \]
\[ y = \sqrt [3]{x_1^2 + x_2^2 + x_3^2 + x_4^2} \]
$$\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a}$$
\[\overrightarrow{AB} = \overrightarrow{b} + \overrightarrow{a}\]
$$ c = a \cdot c $$
\[ c = a \cdot c \]
$$
\lim_{x\rightarrow0} \sin(x+y)
$$
$$
\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1
$$
\[
\lim_{x\rightarrow0} \sin(x+y)
\]
\[
\lim_{x\rightarrow0} \frac{\sin(x)}{x} = 1
\]
\[x^{\frac{1}{2}}\]
$$
\int_{0}^{\frac{\pi}{2}}
$$
$$
\sum_{i=1}^{n}
$$
$$
\prod_\epsilon
$$
\[ \int_{0}^{\frac{\pi}{2}} \]
\[ \sum_{i=1}^{n} \]
\[ \prod_\epsilon \]
$ a, b, c \neq \{ \{ a\}, b, c\} $
{ 和 } 是保留字需要‘\’转义
$ a, b, c \neq { {a}, b, c} $
$ 1 + (\frac{1}{1-x^2})^3 $
$ 1 + (\frac{1}{1-x^2})^3 $
$ 1 + \left(\frac{1}{1-x^2}\right)^3 $
$ 1 + \left(\frac{1}{1-x^2}\right)^3 $
$$ \left(\left(x+y\right)\left(x-y\right)\right)^2 $$
\[ \left(\left(x+y\right)\left(x-y\right)\right)^2 \]
$$ \big((x+y)(x-y)\big)^2 $$
\[ \big((x+y)(x-y)\big)^2 \]
$ \big( \quad \big)$
$ \Big( \quad \Big)$
$ \bigg( \quad \bigg)$
$ \Bigg( \quad \Bigg)$
$ \big( \quad \big)$
$ \Big( \quad \Big)$
$ \bigg( \quad \bigg)$
$ \Bigg( \quad \Bigg)$
$$
\left[
\begin{matrix}
1 & 2 & 3 \\\
4 & 5 & 6 \\\
7 & 8 & 9
\end{matrix}
\right]
$$
\[ \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] \]
$$
\begin{bmatrix}
1&2&3\\\
4&5&6\\\
7&8&9
\end{bmatrix}
$$
\[ \begin{bmatrix} 1&2&3\\4&5&6\\7&8&9 \end{bmatrix} \]
$\cdots$
$\ddots$
$\vdots$
\(\cdots\)
\(\ddots\)
\(\vdots\)
$$
\begin{bmatrix}
1&2&\cdots&4\\\
7&6&\cdots&5\\\
\vdots&\vdots&\ddots&\vdots\\\
8&9&\cdots&0
\end{bmatrix}
$$
\[ \begin{bmatrix} 1&2&\cdots&4\\7&6&\cdots&5\\\vdots&\vdots&\ddots&\vdots\\8&9&\cdots&0 \end{bmatrix} \]