●BZOJ 1185 [HNOI2007]最小矩形覆盖

Posted *ZJ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了●BZOJ 1185 [HNOI2007]最小矩形覆盖相关的知识,希望对你有一定的参考价值。

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1185

题解:

计算几何,凸包,旋转卡壳

结论:矩形的某一条边在凸包的一条边所在的直线上。

(证不来,网上好像也没看到证明。。。诶。。。)

通过结论,问题转化为枚举凸包每条边,然后求出当矩形的一条边在该边所在的直线上时的最小矩形

即我们需要求出在凸包上,相对与这条边的最右边,最上面和最左边的点,

而最上面的点可以通过叉积得到最优位置,

最左和最右就可以通过点积的到最优位置,(一个点积最大,一个点积最小)。

同时由于随着边的顺时针枚举,这三个东西都具有单调性,所以用旋转卡壳。

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 50050
using namespace std;
const double eps=1e-10;
int sign(double x){
	if(fabs(x)<=eps) return 0;
	return x<0?-1:1;
}
struct Point{
	double x,y;
	Point(double _x=0,double _y=0):x(_x),y(_y){}
	void Read(){scanf("%lf%lf",&x,&y);}
};
typedef Point Vector;
bool operator < (Point A,Point B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A,double k){return Vector(A.x*k,A.y*k);}
double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
Point D[MAXN],C[MAXN],ANS[6],tmp[6];
int Andrew(int dnt){
	int cnt=0,k;
	sort(D+1,D+dnt+1);
	for(int i=1;i<=dnt;i++){
		while(cnt>1&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
		C[++cnt]=D[i];
	} k=cnt;
	for(int i=dnt-1;i>=1;i--){
		while(cnt>k&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
		C[++cnt]=D[i];
	}
	return cnt-(dnt>1);
}
double TA(Point P1,Point P2,Point P){//Triangle_Area
	return fabs((P-P1)^(P-P2))/2;
}
double PP(Point P1,Point P2,Point P){//Projection_Product
	return (P-P1)*(P2-P1);
}
double GL(Vector A){//Get_Length
	return sqrt(A*A);
}
Vector UV(Vector A){//Unit_Vector
	double len=GL(A);
	return Vector(A.x*(1/len),A.y*(1/len));
}
double DTL(Point P,Point P1,Point P2){//Distant_to_Line
	return fabs(((P-P1)^(P-P2))/GL(P2-P1));
}
double rectangle(Vector v,Point d,Point r,Point u,Point l){
	static Vector _v,w; static double t,h;
	_v=Vector(-v.y,v.x); 
	v=UV(v); _v=UV(_v); w=l-d;
	t=(w^_v)/(v^_v); 
	tmp[1]=d+(v*t);
	h=DTL(r,tmp[1],tmp[1]+_v);
	tmp[2]=tmp[1]+v*h;
	h=DTL(u,tmp[1],tmp[1]+v);
	tmp[4]=tmp[1]+_v*h;
	tmp[3]=tmp[1]+((tmp[2]-tmp[1])+(tmp[4]-tmp[1]));
	return TA(tmp[1],tmp[3],tmp[4])+TA(tmp[1],tmp[3],tmp[2]);
}
double RC(int cnt){//Rotating_Calipers
	double S=1e300,_S; C[cnt+1]=C[1];
	int l,r=1,u=1;
	for(int i=1;i<=cnt;i++){
		while(sign(PP(C[i],C[i+1],C[r])-PP(C[i],C[i+1],C[r+1]))<=0) r=r%cnt+1;
		while(sign(TA(C[i],C[i+1],C[u])-TA(C[i],C[i+1],C[u+1]))<=0) u=u%cnt+1;
		if(i==1) l=r;
		while(sign(PP(C[i],C[i+1],C[l])-PP(C[i],C[i+1],C[l+1]))>0) l=l%cnt+1;
		_S=rectangle(C[i+1]-C[i],C[i],C[r],C[u],C[l]);
		if(sign(S-_S)>0){
			S=_S;for(int k=1;k<=4;k++) ANS[k]=tmp[k];
		}
	}
	return S;
}
void printPoint(){
	int p=1; for(int i=2;i<=4;i++) 
		if(sign(ANS[i].y-ANS[p].y)<0||(sign(ANS[i].y-ANS[p].y==0)&&sign(ANS[i].x-ANS[p].x)<0)) p=i;
	for(int i=1;i<=4;i++,p=p%4+1) printf("%lf %lf\n",ANS[p].x,ANS[p].y);
}
int main(){
	int n; scanf("%d",&n);
	for(int i=1;i<=n;i++) D[i].Read();
	printf("%.5lf\n",RC(Andrew(n)));	
	printPoint();
	return 0;
}

  

以上是关于●BZOJ 1185 [HNOI2007]最小矩形覆盖的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ1185: [HNOI2007]最小矩形覆盖

bzoj1185: [HNOI2007]最小矩形覆盖

●BZOJ 1185 [HNOI2007]最小矩形覆盖

bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

[bzoj1185] [HNOI2007]最小矩形覆盖