狄利克雷卷积

Posted 自为

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了狄利克雷卷积相关的知识,希望对你有一定的参考价值。

数论函数

陪域:包含值域的任意集合

数论函数:定义域为正整数,陪域为复数的函数

积性函数:对于函数$f(n)$,若存在任意互质的数$a,b$,使得$a*b=n$,并且$f(n)=f(a)*f(b)$,那么函数$f(n)$被称为积性函数

常见积性函数:

$1(i)=1$

$f(i)=i$

$\\varphi \\left( i\\right)$(欧拉函数)

$\\mu \\left( i\\right)$(莫比乌斯函数)

拓展:完全积性函数:对于函数$f(n)$,若存在任意数$a,b$(这里取消掉了互质的限制),使得$a*b=n$,并且$f(n)=f(a)*f(b)$,那么函数$f(n)$被称为完全积性函数

狄利克雷卷积

定义函数$f,g$为数论函数

则他们的狄利克雷卷积可以表示为:$f*g$,

设$h=f*g$

$$h\\left( n\\right) =\\sum _{d|n}f\\left( d\\right) g\\left( \\dfrac {n}{d}\\right)$$

显然,$h$也是积性函数

证明:

设$n=a*b$,且$gcd(a, b) = 1$

$$h(n)=\\sum_{d_1|a,d_2|b}f(d_1d_2)g(\\dfrac {a}{d_1}\\dfrac {b}{d_2})$$

$$=\\sum_{d_1|a,d_2|b}f(d_1)f(d_2)g(\\dfrac {a}{d_1})g(\\dfrac {b}{d_2})$$

$$=\\sum_{d_1|a}f(d_1)g(\\dfrac {a}{d_1})\\sum_{d_2|b}f(d_2)g(\\dfrac {b}{d_2})$$

$$=h(a)*h(b)$$

运算法则

交换律:$f * g = g * f$

结合律:$(f * g) * h = f * (g * h)$

分配率:$f * (g + h) = f * g + f * h = (g + h) * f$

如果$f, g$为积性函数,那么$f * g$也是积性函数

注意最后一点非常重要!!

 

以上是关于狄利克雷卷积的主要内容,如果未能解决你的问题,请参考以下文章

狄利克雷卷积及莫比乌斯反演

狄利克雷卷积总结

6.15 省选模拟赛 复活石 狄利克雷卷积 快速幂 数论

狄利克雷卷积和莫比乌斯反演

算法狄利克雷卷积 & 莫比乌斯反演

狄利克雷卷积&&杜教筛&&莫比乌斯反演